Very Crowded Primary GNSS Frequency Band

The 1 dB Criterion:

Non-GNSS Transmitters should not raise the effective noise floor more than 1 dB (12.2%)

- Well established National and International Standard (Just reaffirmed internationally)
- Avoids having to test every application/operation
- Susceptibility varies depending on Precision of receiver - Generally Precision is (1/Bandwidth) for Position/timing applications
- Susceptibility of newer GNSS signal receivers must be included (e.g. consider new Qualcom chip)
- Must consider multiple transmitters, spacing, antenna patterns, and "Space Loss"

U.S. Department of Transportation

Office of the Assistant Secretary for Research and Technology

ICD Min. Power

Some receivers have little acquisition margin...

Typical Urban Antenna Power Pattern

Plotted around 360 degrees of Azimuth

In urban areas the differences can be a factor of 10 (i.e. 10dB) or more

Real Data - One Azimuth in Las Vegas

Summary: Why are there Different Views of Propagation* Models?

- Propagation in the real world:
 - Does not fall off as 1/r² (free-space) would suggest
 - There are peaks and valleys reflecting reinforcing reflections or attenuation - and they change with rain, passing trucks and urban construction
- As an *Assured Communications System*
 - Must insure connectivity use largest attenuation
 - Tend to model as "worst case" (Perhaps the 5 percentile low "tail")

As <u>Interference to a Navigation Signal</u>

- Must consider "least attenuation" (An envelope of the highest signal)
- In Urban areas signal can be larger than "free-space", 1/r², model due to reflections (multipath)

* A <u>Propagation Model</u> is a mathematical description of how the transmitted Radio Signal varies with distance and angle to the transmitter

DOT measurement of 10 MHz Bounding Masks Most Sensitive GPS L1 C/A Receivers

Office of the Assistant Secretary for Research and Technology

Preliminary Results

Impact of Single 12.2 dBW Tower on High Precision Receivers

So What?

<u>Urban Applications at Risk</u>

Taxiway and Runway Navigation

Control and Monitoring of UAVs – Delivery and Reconnaissance

Emergency Vehicle Control and Monitoring Plus 3D victim location

Precision control of Construction Vehicles

Also Possibly in the interference pattern

GNSS Precision Survey in construction of High-Rise Buildings

Flying Car/Robotic Taxi

GNSS Track Safety Discernment

Wish 3: FCC: Does not approve repurposing of Adjacent Spectrum until proposal passes realistic evaluation of all current and future GNSS signals, applications and techniques

- Must honor international "1 dB" criterion
- Tests and analysis are incomplete
 - Excellent work by DOT
 - NASTCN did not explore many critical aspects
 - Critical current Applications and installed base apt to be in Harms way
 - Future Applications and techniques are in jeopardy

The Fundamental Problem: The Shannon Limit

Recap: The 3 Wishes

P

Wish 3: That FCC does not approve repurposing of Adjacent Spectrum until/unless <u>proposal passes</u> <u>realistic evaluation</u> of all current and future GNSS signals, applications and techniques

Wish 2: That low-cost Very Jamresistant GNSS receivers are Commercially available

Wish 1: Begin deployment of eLoran Immediately

Important Takeaway: <u>A Real Concern</u>-

- A US commercial company has argued that <u>"precise" GNSS applications</u> should not be frequency-protected, since they were not originally "authorized"
- Tests show this is very harmful to precision GPS
 <u>At 1/100th</u> the current proposal power (16 W):
 - The most Sensitive receivers affected everywhere
 - $\circ\,$ Half the Receivers affected at $\frac{1}{2}$ the transmitter operating radius
 - Many future applications/techniques potentially at risk...
- Let's support both existing Base and the Future

Are you our Genii?

Questions?

Third Floor in High Sierras 2017 Drought is over?