Smart Grid Use of GPS Time: Protecting Synchrophasor Timestamps

Kevin M. Skey Dr. Michael L. Cohen

March 23, 2016

Approved for Public Release; Distribution Unlimited. Case Number 16-0662

Bottom Line Up Front

- Cyber security for Synchrophasor technology is a consideration when integrated into system operations
 - GPS supplies the time which is used to "time tag" synchrophasor data
- Cyber attackers look for weaknesses in access points to gain entry into a system
- GPS used for Synchrophasor timestamping represents one such access
- GPS spoofing has been demonstrated to impact time and should be a security concern
 - However, readily fieldable protections are available

GPS Time in Power Grid Operations Why should I care?

- Power Grid has a vital dependence on precise time for:
 - Time-stamping of operational data (e.g. supervisory control and data acquisition - SCADA)
 - Wide area situational awareness
 - Synchronization of operations
 - Grid management and control
 - System and asset protection

Synchronized time enables the combining of wide area phase measurements to assist in minimizing cascading blackouts and/or restoration

GPS provides the synchronization

© 2016 The MITRE Corporation. All rights reserved.

Approved for Public Release;

² Distribution Unlimited. Case Number 16-0662

Phasor Measurement Unit: GPS Time Vulnerability Antenna Provides Access to the System

Regional Control Center

© 2016 The MITRE Corporation. All rights reserved.

3

Distribution Unlimited. Case Number 16-0662

One Method for GPS Spoofer Access

© 2016 The MITRE Corporation. All rights reserved.

4

Synchrophasor Effect from GPS Spoofing Attack

Pace of Threat is Increasing

Going Up Against Time: The Power Grid's Vulnerability to GPS Spoofing Attacks

August 1, 2012 - By GPS World By Daniel P. Shepard, Todd E. Humphreys, and Aaron A. Fansler

Google search (21 Feb 2016)

- Time Spoofing -> 1,340,000
- GPS Spoofing -> 383,000
- GPS Time Spoofing -> 292,000

GPS SPOOFING

Low-cost GPS simulator

We are not navigation experts. How can we do GPS spoofing?

Vulnerability exploitation has been demonstrated

- Required sophisticated attacker
- Expert knowledge of GPS

However, Spoofing is now common knowledge; Techniques are prolific in open sources

Low cost open source hardware and software is available;

Cook book approach easing level of entry for attackers

Timing Attack Effectiveness

Timing attacks have various degrees of effectiveness

- Dependency on the built in protections and consistency monitors of a particular GPS receiver and/or integrated timing equipment
- May require exact location of receiver antenna and satellite transmit signal characteristics
 - But not difficult for stationary receiver

Effectiveness of attack cannot be directly observed

- Practice makes perfect
- More susceptible when the attacker knows your equipment and configuration
- Simple mitigations can raise the bar for the attacker

Spoofing Protection Approaches

t Solution Complexity/Cost/Time

© 2016 The MITRE Corporation. All rights reserved.

GPS Interference Detection and Mitigation Applique (GIDMA)

- GIDMA provides a simple inline protection installed between the antenna and GPS C/A code receiver to block some spoofer attacks from access
- In most attacks, the GPS Spoofer signal strength is stronger than the real GPS signal
- GIDMA is able to detect the increased power then blocks the RF signal from the receiver before it can be accessed
- It prevents a false timestamp and "loss of GPS" is indicated
- Once the Spoofer attack has ceased, the RF signal is restored

GIDMA Lab Demonstration

Distribution Unlimited. Case Number 16-0662

9

Synchrophasor Effect from GPS Spoofing Attack...With GIDMA Mitigation

10

Detects GPS Spoofing and blocks fake signal from entering the receiver

© 2016 The MITRE Corporation. All rights reserved.

GPS Time Anomaly: 26 Jan 2016 Time off by 13 microseconds

"Air Force Official Press Release - GPS Ground System Anomaly:

On 26 January [2016] at 12:49 a.m. MST, the 2nd Space Operations Squadron at the 50th Space Wing, Schriever Air Force Base, Colo., verified users were experiencing GPS timing issues. Further investigation revealed an issue in the Global Positioning System ground software which only affected the time on legacy L-band signals. This change occurred when the oldest vehicle, SVN 23, was removed from the constellation. While the core navigation systems were working normally, the coordinated universal time timing signal was off by 13 microseconds which exceeded the design specifications. The issue was resolved at 6:10 a.m. MST, however global users may have experienced GPS timing issues for several hours. U.S. Strategic Command's Commercial Integration Cell, operating out of

GPS system operation issues should also be a concern

Timing equipment with GPS Disciplined Oscillators (GPSDO):

A First Line of Defense to Consider

Timing equipment integrated with high quality oscillators with various degrees of stability

 GPS syncs (or steers) the Oscillator-based clock rather than directly using time from the GPS Receiver

Maintains time through a GPS service outage

Ocsillator Type	Drift/Day	Hold Over Period	
ТСХО	10 mSec	24 hours	
OCXO	100 uSec	35 days	0.0
Rubidium	8 uSec	140 days	http://er

Possible to measure anomalous divergence between oscillator and GPS clock

- Alarm when out of spec
- Detect spoofing (less sophisticated attacks) or anomalous GPS system behaviors
- Mitigation behaviors are vendor specific and may require expert knowledge of equipment operation

http://www.nist.gov/pml/div688/grp40/receiverlist.cfm

Summary

- Understanding the robustness of your GPS-based timing solution is important when it's a significant dependency on the system
- Some GPS receivers have a demonstrated vulnerability to spoofing that can be propagated into critical down stream Grid operation
- Cyber/Security assessment and testing should be performed to understand impacts of incorrect time stamps in PMU data
- GIDMA demonstrated one possible and simple GPS protection to increase robustness against spoofing
- FFRDCs and government labs continue to develop robust protection practices and technologies for GPS-based applications

13

Contact Information

Kevin Skey, MITRE

Senior Principal Engineer Position, Navigation and Time (PNT) Technologies 781-271-3390 skey@mitre.org

