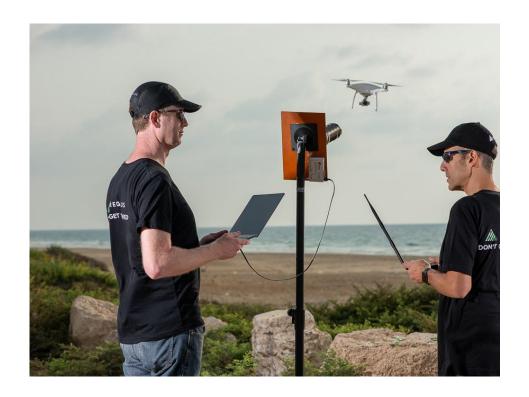


Research on GPS Resiliency & Spoofing Mitigation Techniques Across Applications

Yoav Zangvil, CTO and Co-Founder. Regulus Cyber

Context of our Research



The Eyes and Ears of Modern Systems

- Our focus is on **GNSS**
 - No security
 - Easily spoofed
 - Easily jammed

Yoav Zangvil, CTO and Co-Founder, Regulus Cyber

- B.Sc. degree in Mechanical Engineering from the Technion with major in robotics, dynamics and control systems, Cum laude.
- Military UAV Systems Engineer dealing with telecommunications protocols, encryption and resilient GNSS.
- Prior to Regulus, Elbit Systems, ADT, Rafael Advanced
 Defense Systems, Comverse and a Technology Division in the IDF.

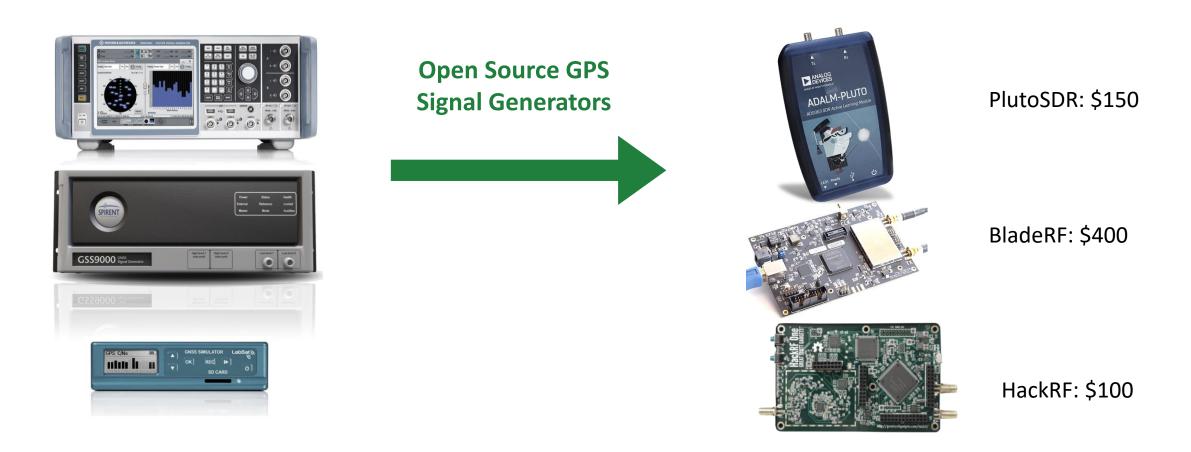
REGULUS Cyber Defense for Sensors

Context of our Research – GNSS Across Applications

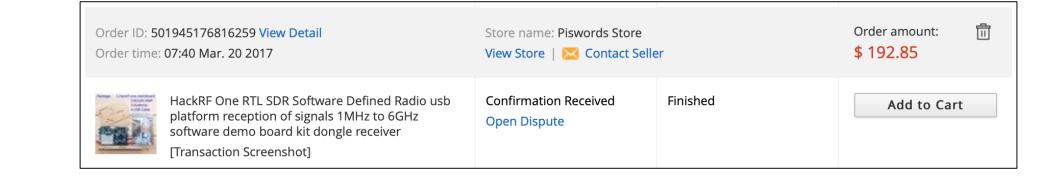
- LBS Over 90% of context-aware apps rely on GNSS.
- **Road** The need in autonomous driving and ADAS for reliable and accurate positioning.
- Aviation General positioning, ILS/GPS, approaches at airfields, ATC, ADSB.
- Maritime GNSS has become the primary means of obtaining PNT information at sea.
- **Surveying** GNSS remains the backbone technology in increasingly sophisticated applications.
- **Timing** Keeping accurate time in sync across multiple locations is done using GNSS for critical infrastructures, including telecoms, energy, finance, sea ports and airports. Evolution of telecom networks and 5G makes GNSS increasingly essential, driving future shipments.

Why Now?

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD


GNSS Spoofing – The Threat is Evolving

Until 5 years ago


A GNSS spoofing attack would require expensive, high-end equipment in the \$50K - \$500K range

Today

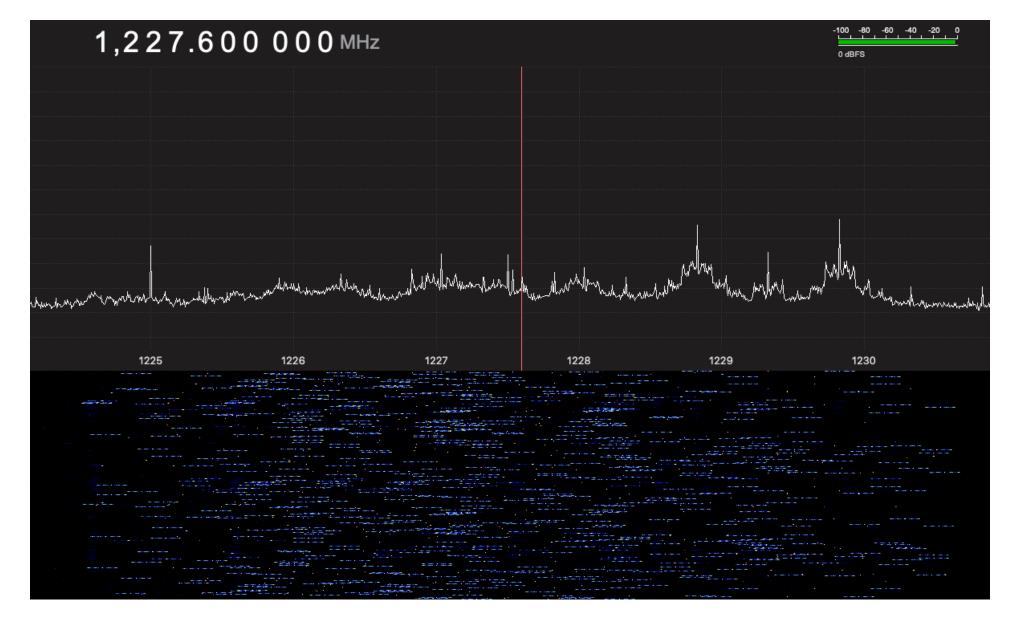
Software Defined Radios and open source software allow anyone to spoof for \$100 - \$400

Software Defined Radios – Getting Cheaper and Accessible

Bundle 1	HackRF One SDR Software Defined Radio 1MHz to 6GHz Mainboar Development board kit ***** 4.9 (85 votes) ~ 163 orders		
	Price: US \$102 / piece Discount Price: US \$88.74 / piece -13% 3 days left Bill Get our app to see exclusive prices • Bulk Price •		
	Bundle:		
	Shipping: US \$8.38 to Israel via ePacket Estimated Delivery Time: 19-32 days ?		
HackRF One + Shielding case + Acrylic case	Quantity: – 1 + piece (843 pieces available)		

2017 - \$193

2019 - \$89


GNSS Jamming – Smart, Portable and Undetected

- Pluto SDR
- Setup Price \$158
 - Pluto SDR \$149
 - Power bank \$7
 - USB cable \$2
- Specification:
 - Up to -15dBm channel power over 2.6M
 - Undetected by GNSS receivers as a jammer

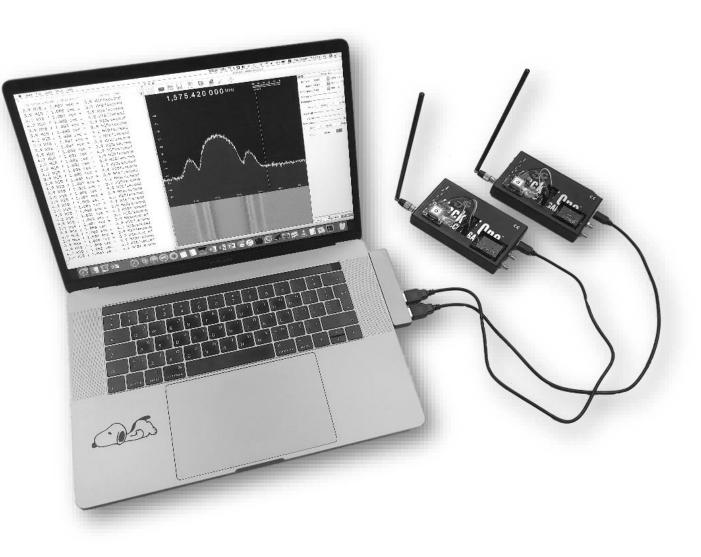
Jamming GPS L2 with the Pluto SDR

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD

GNSS Spoofing – Simple Setup, Pluto SDR

- Setup Price \$165
 - Pluto SDR \$149
 - Power bank \$7
 - 16GB Flash drive \$5
 - OTG USB Cable \$2
 - USB cable \$2
- Capabilities:
 - Reply recorded files
 - Reply generated scenarios
 - Smart jamming
- How to spoof:
 - 1. Generate or record an I/Q data file with 2.6M sample rate.
 - 2. Copy to a flash drive
 - 3. Create a file called runme0.sh with 3 lines:

iio_attr -a -c ad9361-phy TX_LO frequency 1575420000 iio_attr -a -c -o ad9361-phy voltage0 sampling_frequency 2600000 cat /media/sda1/spoof.bin | iio_writedev -a -b 50000 cf-ad9361-dds-core-lpc


REGULUS Cyber Defense for Sensors

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD

REGULUS Cyber Defense for Sensors

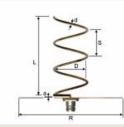
GNSS Spoofing – Intermediate Setup, HackRF

- Setup Price \$252 + laptop
 - 2 x HackRF \$200
 - 2 x USB Cable \$4
 - 2 x TCXO \$28
 - 2 x GPS Receiver (for 1PPS) \$20
- Specification:
 - Dual frequency
 - 1PPS Sync from GPS
 - Accurate TCXO
- Capabilities:
 - Real time spoofing static/dynamic scenarios
 - Reply recorded and generated files
 - Smart jamming

GNSS Spoofing – Sophisticated Setup

- Four different constellation
- Four different frequencies
- Accurate OCXO
- 1PPS Sync from a GNSS Receiver
- Multi frequency antenna
- Start with valid navigation messages
- Transition to corrupted messages, rendering NMA useless

REGULUS Cyber Defense for Sensors


GNSS Spoofing – Long Range 3D Printed Antenna

Helix antenna design and construction details

Input data (design requirements)

Design frequency	1575.42 MHz	
Number of turns	13	
Turn spacing	0.23 wavelengths	
	Calculate	

The results

Legend. The letters in the image are used in the table below.

To get a large version, click on the image.

Wavelength		190.4	mm
Ideal diameter (internal)	D=	66	mm
Gain		14.46	dBi
Conductor diameter	d=	3.8	mm
Winding step (between centers)	S=	43.7	mm
Separation of the adapter section	a=	1.8	mm
Total conductor length		2757.7	mm
Minimum reflector diameter	R=	118	mm
Total antenna length	L=	569.3	mm

Design performance

Bandwidth (@ -1dB)	Fmax/Fmin:	1.06
	Fmax:	1622.82 MHz
	Fmin:	1529.4 MHz
Bandwidth (@ -3dB)	Fmax/Fmin:	1.12
	Fmax:	1671.65 MHz
	Fmin:	1484.72 MHz
Beam width (@ -3dB)		30 degrees

Calculator: http://jcoppens.com/ant/helix/calc.en.php

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD

REGULUS Cyber Defense for Sensors

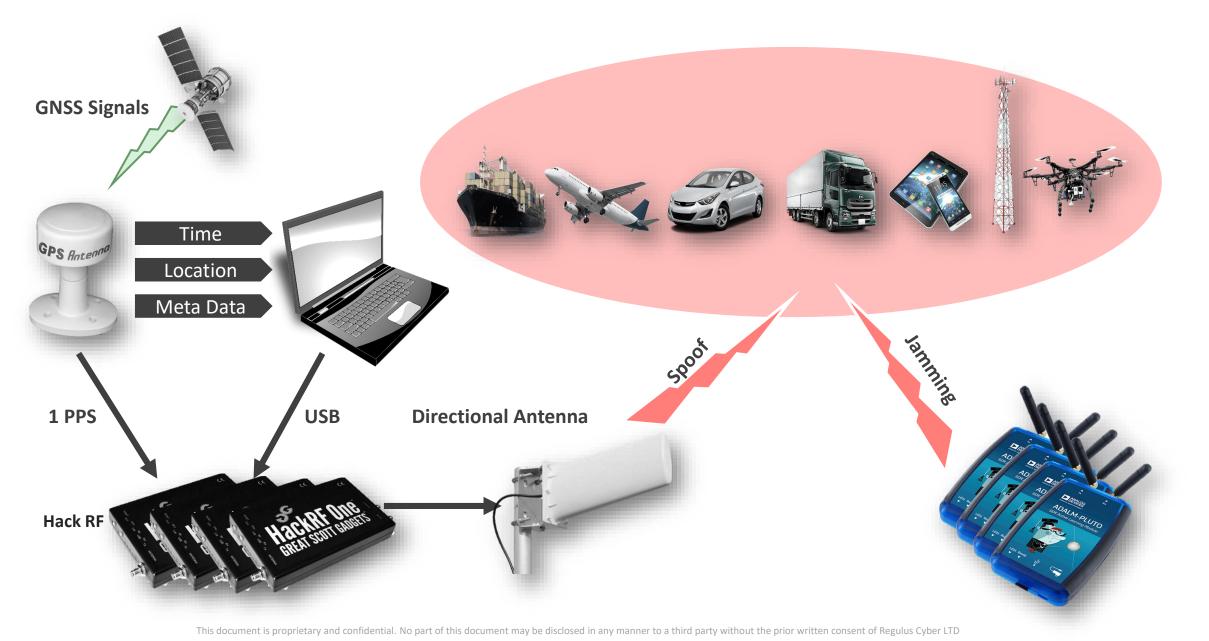
GNSS Spoofing and Jamming – Proposed Categories for Civil Aviation

Jamming	Spoofing
J1 - Collateral Jammers	S1 – Repeaters
	S2 – Errant signals
J2 - High Power Interferers	S3 - Collateral Spoofers – Simulators
	S4 - Collateral Spoofers – Re-radiators
J3 - Targeted Jammers	S5 - Targeted Spoofers – Simulators
J4 - Targeted Sophisticated Jammers	S6 - Targeted Spoofers – Re-radiators
	S7 - Targeted Sophisticated Spoofers

Table 1 – New Interference Types (Jamming, Spoofing) and Categories (J1-J4, S1-S7)

"INCREASING INTERNATIONAL CIVIL AVIATION RESILIENCE: A PROPOSAL FOR NOMENCLATURE, CATEGORIZATION AND TREATMENT OF NEW INTERFERENCE THREATS", January 28 - 31, 2019

GNSS Spoofing - Common Assumptions and Rebuttals


Countermeasures	Spoofer
Check Time Shift	Hacker can be perfectly aligned with real-time signals, achieving a seamless takeover and making it very hard to detect
Check Position Shift	Hacker can start spoofing to the current position and after a while, add drift to the position
Multi Constellation Receiver	Hacker can spoof other constellations or jam them
Multi Frequency Receiver	Hacker can jam other frequencies
Accurate Receiver Clock	Hacker can use a TCXO or a OCXO
Navigation Message Authentication (NMA)	Replay attacks with a time shift Corrupted CRC – receiver can still track the signal
Sensor Fusion (IMU, odometer, WiFi, Cellular)	Commercial grade IMU drift very fast Sensor fusion aimed to improve accuracy not security

Spoofing Techniques – From Simple to Complex

- Meaconing replay recorded sky
- Spoof using a generated scenario on L1
- Add 1PPS sync to allow real-time spoofing
- Add TCXO and OCXO
- Since L1 and E1 are the same frequency, we developed a selective jammer that allows us to jam E1 (BOC) but allows us to spoof L1 (BPSK)
- Spoof GPS L1 and jam everything else
- Multi constellation and multi frequency spoofing

Advanced Spoofing Setup

Research: GNSS Resiliency Report

- Developing Pyramid GNSS technology spoofing detection for commercial GNSS receivers.
- Lab and field tests to verify reliability of detection technology.
- Advanced GNSS spoofing capabilities, using open source hardware and modified software
- Reveal vulnerabilities of commercial GNSS receivers.
- Aid development of mitigation techniques.

What is the status of commercial GNSS security?

REGULUS Cyber Defense for Sensors

GNSS Resiliency Report – Scenarios

Manufacturer	Model	Successfully Spoofed
GlobalTop	PA6C/GTPA010	Yes
u-Blox	NEO-6M	Yes
u-Blox	NEO-7M	Yes
GlobalSat	G-Star IV	Yes
STM	Teseo-LIV3F	Yes
u-Blox	NEO, CAM, SAM M8	Yes
Furuno	GN-87	Yes
Javad	TRH-G2	Yes
u-Blox	ZED-F9	Yes
Manufacturer	Model	Successfully Spoofed
Apple	iPhone XS	Yes
Samsung	Galaxy Prime Pro	Yes
Huawei	Mate 10 Pro	Yes
Xiaomi	Mi8	Yes
Manufacturer	Model	Successfully Spoofed
Mercedes	CLS 400D	Yes
BMW	BM 318A	Yes
Cadillac	CT6	Yes
Tesla	S	Yes
Toyota	RAV4	Yes

Table 4: Indoor Test Results

Indoor Tests: Standalone Receivers and Mobile Phones

• Inside a lab, where no external GNSS signals are available

Indoor Tests: Cars

 Inside underground parking garage, where no external GNSS signals are available.

GNSS Resiliency Report – Scenarios

Manufacturer	Model	Successfully Spoofed
GlobalTop	PA6C/GTPA010	Yes
u-Blox	NEO-6M	Yes
u-Blox	NEO-7M	Yes
GlobalSat	G-Star IV	Yes
STM	Teseo-LIV3F	Yes
u-Blox	NEO, CAM, SAM M8	Yes
Furuno	GN-87	Yes
Javad	TRH-G2	Yes
u-Blox	ZED-F9	Yes
Manufacturer	Model	Successfully Spoofed
Apple	iPhone XS	Yes
Samsung	Galaxy Prime Pro	Yes
Huawei	Mate 10 Pro	Yes
Xiaomi	Mi8	Yes

Table 5: Results of Outdoor Spoofing, Scenario A

Outdoor Test, Scenario A:

Spoofing attack is initiated after the target has locked on a real GNSS signal

GNSS Resiliency Report – Scenarios

Manufacturer	Model	Successfully Spoofed
GlobalTop	PA6C/GTPA010	Yes
u-Blox	NEO-6M	Yes
u-Blox	NEO-7M	Yes
GlobalSat	G-Star IV	Yes
STM	Teseo-LIV3F	Yes
u-Blox	NEO-M8	Yes
Furuno	GN-87	Yes
Javad	TRH-G2	Yes
Manufacturer	Model	Successfully Spoofed
Mercedes	CLS 400D	Yes
BMW	BM 318A	Yes
Cadillac	CT6	Yes
Tesla	S	Yes
Toyota	RAV4	Yes

Table 6: Results of Outdoor Spoofing, Scenario B

Outdoor Test, Scenario B:

Spoofing attack is initiated before the target is powered on.

Since a mobile phone is always on, it was not a part of this scenario.

GNSS Resiliency Report – Findings

Standalone Receivers

- Reports wrong position and/or time
- No spoofing alarm is activated
- No jamming alarm is activated
- Additional effect are system dependent

Mobile Phones

- All LBS are not useable
- Find My iPhone
- Photo geo-tagging
- Unable to plan or follow a route
- Unable to use navigation apps
- Unable to use ride hailing apps like Uber,
 DiDi and Lyft.

Major privacy implications where a user can be "placed" in a location that he is not.

GNSS Resiliency Report – Findings in Cars

Safety:

- Exit at the wrong interchange.
- Aggressive braking and steering.
- Accelerate to 100 km/h in a 30 km/h zone.
- Slowed down to 50 km/h on a 100 km/h road.
- Failed to slow down before intersections.
- Braked on main road thinking an intersection is close.
- Height of the car's suspension changed while driving.
- SOS feature reports wrong position to dispatch.
- Confusing and distracting navigation cues while trying to follow a planned route.

Non-safety:

- The car's built-in navigation system displays wrong position on the map.
- Car's clock displays wrong time.
- Unable to plan or follow a route.
- Unable to activate adaptive cruise control.
- GPS-based alarm services do not work.

Our employee was genuinely frightened while holding the wheel, and despite the fact he could manually control the car and regain control, the split second of speeding, turning, and other aggressive maneuvers resulted in panic on a highway. This proves that regulation has to be actively involved in ensuring PNT resiliency for public safety.

GNSS Resiliency Report – Responsible Disclosure

Mixed reactions from major corporations across industries:

Negative:

- More often than not, companies did not take visible responsibility for vulnerability of their product
- Referred to it as a 'Global problem across industries'
- Impression that Spoofing threat is beyond their reach and realm of responsibility

Positive:

- Number of companies asked for extension
- Some indicated interest in cooperating towards testing their technology and finding a solution

REGULUS Cyber Defense for Sensors

Responsibility for GPS vulnerabilities and their effects on platforms and users need to be defined. Government needs to take lead in this matter. Still early – Now is the time to act.

GNSS Resiliency Report – Responsible Disclosure

Mixed reactions from major corporations across industries:

Negative:

- More often than not, companies did not take visible responsibility for vulnerability of their product
- Referred to it as a 'Global problem across industries'
- Impression that Spoofing threat is beyond their reach and realm of responsibility

Positive:

- Number of companies asked for extension
- Some indicated interest in cooperating towards testing their technology and finding a solution

REGULUS Cyber Defense for Sensors

Responsibility for GPS vulnerabilities and their effects on platforms and users need to be defined. Government needs to take lead in this matter. Still early – Now is the time to act.

Responsible Disclosure – Tesla

Main Points From Quote From Tesla Motors:

- It doesn't demonstrate any issues specific to Tesla
- Any product or service that uses the public GPS broadcast system can be affected by GPS spoofing
- That hasn't stopped us from taking steps to introduce safeguards in the future
- Drivers using those features must still be responsible for the car at all time

Responsible Disclosure – Mobile Manufacturer

Quote:

"As we mentioned earlier, the scenario you are describing is not a vulnerat specific devices but a challenge to current smartphone devices in general with little immediate threat.

While we are working with our partners to enhance the functions of our smartphone devices, we do not acknowledge that this is specific vulnerability.

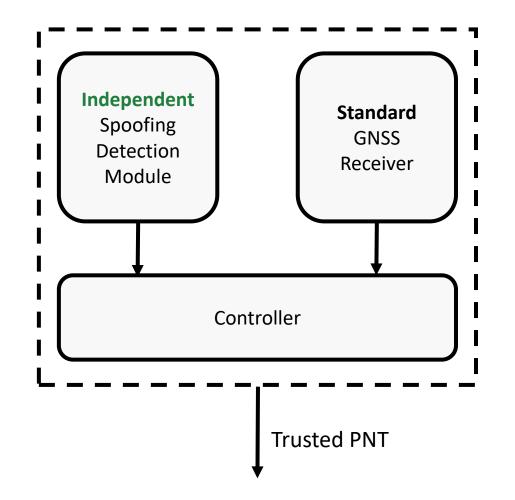
This is a known scenario that is already covered by the multiple media outlets, but if there is anything that we missed please feel free to let us know."

Easy To Execute Spoofing Scenarios

- At the base of operations
- Inside an office building or a mall
- Disrupt ride-sharing and mobility services (potential theft)
- Inside an airport/maritime port
- Target single car by tailing (Cargo theft)
- Initiate spoof in parking lot
- Unintentional (taxi drivers, Pokémon Go)

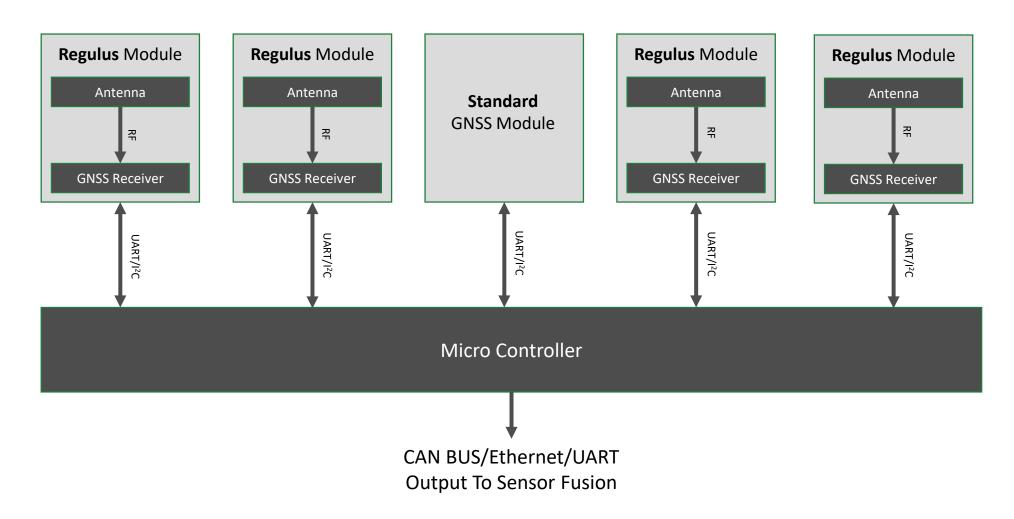
So What Can We Do?

Short-term Solution


- Detection and Prevention
 - Prevent false PNT effects
 - Fortify existing receivers
 - Solution at the board level
 - Use today's GNSS chips

- Mitigation
 - Provide valid PNT under spoofing

Long-term Solution

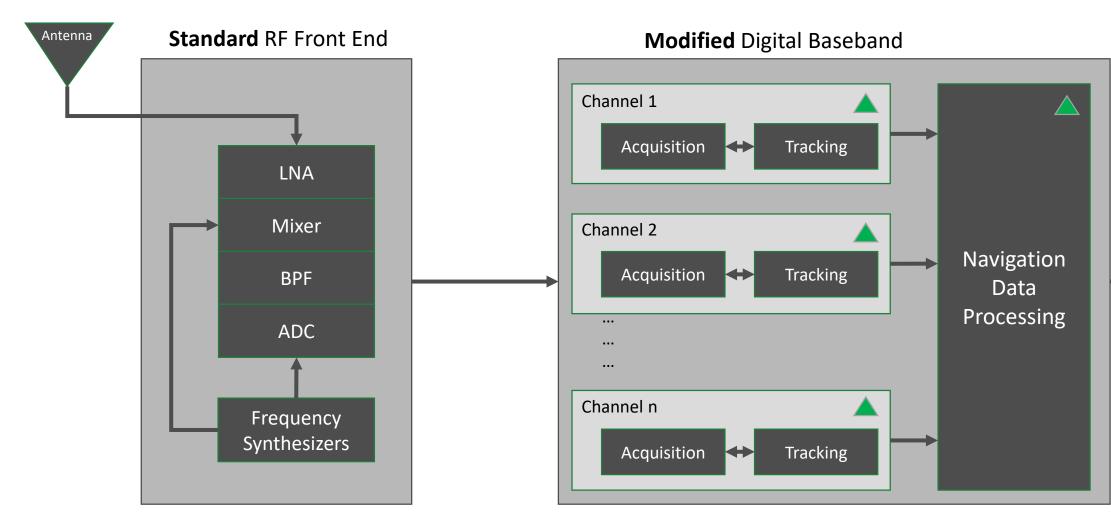

- For new receivers
- Solution at the chip level
- Re-design GNSS chips

Short Term Solution – Board Level

Short Term Solution – Pyramid GNSS Receiver

Based on DOA, yet not a CRPA!

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD



Long Term Solution – Chip Level

- Multi constellation should not be mandatory
- Multiple correlation peaks tracking clear sign of spoofing
- Instead of throwing away these PRNs, use them!
- Need a smart way to group those peak
- Once grouped, two converging PNT solutions can be found

REGULUS Cyber Defense for Sensors

Long Term – Pyramid IP Core

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior written consent of Regulus Cyber LTD

Summary

- The new goals of the industry **security and reliability**
- Sensor fusion helps but is not the holy grail the receiver must deal with spoofing
- The threat evolves we must solve the **future** threat today
- Providing a PNT with a confidence level does not tell if you are spoofed a fully deterministic solution must be used
- Deploy a Red Team capable of testing the effects of interference, jamming, and spoofing
- Define and enforce GNSS security standards

REGULUS

Kk.

www.regulus.com

yoav@regulus.com

