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Abstract

This research effort examines inertial navigation system aiding using magnetic

field intensity data and a Kalman filter in an indoor environment. Many current

aiding methods do not work well in an indoor environment, like aiding using the

Global Positioning System. The method presented in this research uses magnetic

field intensity data from a three-axis magnetometer in order to estimate position using

a maximum – likelihood approach. The position measurements are then combined

with a motion model using a Kalman filter. The magnetic field navigation algorithm

is tested using a combination of simulated and real measurements. These tests are

conducted using a magnetic field intensity map of the entire test environment. The

result of these tests show that the position aiding algorithm is capable of generating

positon estimates from real data within less than 1 meter of the true trajectory,

with most estimates .3 meters away from the true trajectory in a laboratory hallway

environment. To further explore the capabilities of the position aiding algorithm, a

leader-follower scenario is implemented. In this scenario, the follower uses magnetic

field intensity data collected by the leader to estimate its current position and attempt

to follow the leader’s trajectory. The results show that tracking is possible, and that

the measurement span of the leader has a large impact on the result.
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Magnetic Field Aided Indoor Navigation

I. Introduction

P
recision navigation has become an important aspect of military and commer-

cial applications. The advent of Global Navigation Satellite Systems (GNSS)

has provided an unprecedented level of accuracy to a wide variety of users. Once these

users experience a specific level of accuracy, they become dependant on that level of

accuracy and desire more accuracy in more situations. The position solutions pro-

vided by GNSS have provided sub-meter level accuracy in many applications, but the

positioning solutions from these types of navigational aids are only available when the

receiver has uninterrupted access to at least four satellites [9]. While overall satellite

coverage of the Earth has increased, environments such as urban canyons and inside

buildings can prevent the acquisition of the required satellite signals. Without ade-

quate satellite coverage, the sub-meter level positioning solutions cannot be obtained.

At the same time, there is an increasing desire to develop autonomous, miniature

vehicles. The navigation of these systems is generally completed with inertial navi-

gation systems aided by GNSS position solutions. If the GNSS position solutions are

not available, these miniature vehicles will not be able to navigate with the required

level of accuracy. This research will investigate the feasibility of using magnetic fields

to aid an inertial system when GNSS signals are not available.

The research presented here examines the uniqueness of magnetic field variations

from one location to the next in an indoor environment. Using this uniqueness, the

feasibility of using magnetic field variations to accurately estimate the trajectory of

a vehicle is presented. Finally, the magnetic aided position algorithm developed to

estimate a vehicle’s trajectory is applied to a trajectory tracking implementation.

The following research examines the spatial variations of magnetic field intensities,

but does not include an in-depth analysis of the variations with respect to time.
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The use of magnetic field variations to aid outdoor navigation has been suggested

by various authors [3, 16] and successfully implemented by Wilson, Kline-Schoder,

Kenton, Sorensen, and Clavier [19]. The methods proposed, and used, implement a

terrain navigation algorithm, where the terrain map is replaced by a map of magnetic

field intensities, to determine the position based on the measured magnetic field in-

tensity. The approach presented in this research is based on a multiple beam terrain

navigation approach originally developed for submarine navigation [11]. However, the

algorithm has been adapted to use a magnetic field intensity map instead of a ter-

rain map and three-axis magnetometers instead of a depth/terrain height measuring

device.

1.1 Modes of Operation

The magnetic aided position algorithm is implemented using two different ap-

proaches. The first approach estimates a vehicle’s trajectory using a magnetic field

intensity map of the entire area to be traversed, which provides a position solution

relative to the area that is included in the map. The second method uses magnetic

field intensity data collected by a lead vehicle, or the leader. The leader then passes

this information to a second vehicle, the follower, that uses the magnetic data, com-

bined with the position estimate of the leader, to estimate its position relative to the

leader.

1.2 Thesis Overview

Chapter II begins with a brief overview of the components used in an inertial

navigation system (INS) and the types of errors associated with these devices. A

performance analysis of three different grades of INS is shown to demonstrate the need

for position aiding. The performance analysis is followed by a brief description of the

Earth’s magnetic fields and the sources of variations of the main field. The history

of using magnetic fields to aid in navigation is then covered, to include animals that

find there way around the Earth using magnetic fields. The final section of Chapter II

2



introduces and explains the multiple beam terrain navigation approach that was the

starting point for this research.

The third chapter of this thesis covers the methods used in the design of the mag-

netic aided position algorithm. The chapter begins by detailing the equipment used

and required for implementation of this aiding algorithm. The next section in Chap-

ter III describes the magnetic field intensity map generation process. This section

includes information on map grid point spacing, as well as the layout and orientation

of the test environment. Once the map generation has been covered, the system model

used in this research is defined and the magnetic aided position algorithm, as imple-

mented, is explained. The final piece of Chapter III is the leader-follower algorithm.

This section explains the different method used for map generation, as well as the

design of the tracking controller used on the follower to aid in tracking the estimated

trajectory of the leader.

Chapter IV presents the results generated using the methods presented in Chap-

ter III. The chapter begins by showing the result of the map generation process.

Following the map generation, the ensemble statistics from 100 Monte Carlo (MC)

runs are presented and compared with the filter estimates to show the accuracy of

the system model implemented in the Kalman filter. In addition to the MC results,

the position errors associated with using real measurements are shown and explained.

The final set of results show the performance of the leader-follower algorithm. The

leader-follower algorithm magnified some underlying problems with the magnetic aid-

ing position algorithm. These problems are explained and some options for minimizing

their effects are described, implemented, and the results are presented.

The thesis closes with a summary of the information presented in the preceding

sections and chapters. Chapter V closes with a list of recommendations that will

improve the results and make the magnetic aided position algorithm more robust.
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II. Background

N
avigation on the Earth requires a few key elements. The first is a reference

frame and the ability to move between different frames using coordinate trans-

formations. The coordinate transformation relies on the angular relationship between

reference frames to rotate one frame onto another. The coordinate transformations

and positioning information are obtained using information provided by gyroscopes

and accelerometers. In order to properly understand the research presented in this

document, the concepts of coordinate transformations and reference frames must be

understood. Following a brief description of coordinate transformations and reference

frames, the relationship between accelerometers, gyroscopes, and coordinate transfor-

mation is defined.

As part of this relationship definition, the errors common to accelerometers and

gyroscopes are presented. Due to the errors inherent in these inertial sensors, inertial

navigation systems, must be aided. While numerous aiding techniques are available,

the Kalman filter method is used throughout this research and is explained in this

chapter. The Kalman filter aiding method can be successfully used to aid inertial

systems with many different types of position measuring devices. This chapter will

conclude with a look at some emerging techniques that use the Earth’s magnetic field

to aid navigation systems.

2.1 Coordinate Transformations

Navigation on the earth uses numerous reference frames. A reference frame is

defined by Titterton and Weston as “the set of axes to which the measurements and

estimated quantities generated within an inertial system are referenced” [16]. There

are many resources that can be used to define these reference frames [17]. In addition

to being able to understand how each reference frame relates to the earth, it is also

important to understand how these frames relate to each other. While “the concept of

navigation reference frames is an important fundamental for expressing the position,

velocity, and orientation of a body” [17], coordinate transformations are the tools
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used to make this information mean something. Without the ability to move from

one reference frame to another, vehicles in different reference frames would not be

able to determine their position in relation to each other.

The Direction Cosine Matrix (DCM) is one way of rotating between reference

frames. The DCM uses geometry and vector math to relate the two reference frames.

The DCM uses “the inner product of each unit basis vector in one frame with each unit

basis vector in another frame” [17]. The standard notation for the DCM is Cb
a, where

a is the reference frame that is being converted from and b is the reference frame being

converted to. The angles used to determine the DCM are provided by gyroscopes in

the navigation system. A vector expressed in frame a (xa) can be rotated into frame

b (xb) using

xb = Cb
ax

a (2.1)

2.2 Strapdown Inertial Navigation Systems

Strapdown inertial navigation systems (SINS) are used to determine a vehicle’s

position on or over the Earth by determining the vehicle’s attitude and motion. There

are many different ways to make a strapdown navigation system, but they all con-

tain the same major components. The differences between SINS are driven by the

application of that particular SINS. The main factor in determining what a partic-

ular SINS will look like is the accuracy requirement for that particular application.

The accuracy of a SINS is generally expressed as a rate by which the SINS deviates

from the actual position (i.e. x meters per sec/min/hour). For the purposes of this

research, the components that make up a SINS will be broken down into two main

categories: accelerometers and gyroscopes. Each of these components are necessary

for the vehicle to calculate its attitude and position with respect to the earth. The

overall accuracy of the SINS comes from the accuracy of these two components. The

sources of error for each of these devices will be discussed in their respective sections.
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2.2.1 Accelerometers. Accelerometers measure the acceleration of an ob-

ject [2]. The vehicle’s position can be found by integrating the acceleration twice.

Fraden states that this becomes an important truth when dealing with applications

that are in a “noisy environment” (this means an environment that has some sort of

condition that would make the sensor believe it is accelerating in a direction that the

aircraft is not actually moving in, i.e., vibrations). This is important because in order

to calculate velocity and acceleration from position, it is necessary to take the first

and second derivative of the position, respectively. Taking the derivative of a “noisy”

signal increases the level of noise in the signal to the point of making it unusable or

highly inaccurate [2]. Since accelerometers measure acceleration, there is no need to

take the derivative, just the integral, which handles “noisy” signals well.

Titterton and Weston go into the mechanics and the theory behind accelerome-

ters in depth. For this research, only a top-level description is needed. Accelerometers

will measure acceleration generated from the force exerted by the aircraft to which it

is mounted as well as the force of gravity. Therefore, the output of the accelerome-

ter must have the gravitational acceleration acting on it subtracted out at any given

time [16].

As stated in Section 2.2, there are various sources of error within accelerometers

that will diminish the overall performance of a SINS. A full description of these are

located in Titterton and Weston. A brief description is given in Table 2.1.

Table 2.1: General Accelerometer and Gyroscope Errors [16]

Type of Error Error Description

Fixed Bias Displacement from zero “when the applied acceleration
is zero”

Scale-Factor Errors Non-exact “ratio of change in the output signal to a
change in the input acceleration”

Alignment Errors Sensor axes is non-orthogonal due to “manufacturing
imperfections”
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Accelerometers provide the linear accelerations needed to calculate how the

vehicle is moving in the inertial frame with respect to the body frame. Generally,

there is one accelerometer oriented in each of the three Cartesian axes, (x, y, z). This

information is needed in the navigation frame of reference to be of use. As mentioned

in Section 2.1, a coordinate transformation will be used to get this data into the correct

reference frame. Gyroscopes provide the angular orientation needed to generate this

coordinate transformation.

2.2.2 Gyroscopes. While accelerometers use Newton’s Second Law of Motion

to calculate the acceleration of the aircraft [16], the gyroscope (called “gyro” for short)

measures the rotation of the aircraft’s body [2].

Mechanical gyros are the foundation for all other types of gyros. For a listing

of the different types, see [2] and [16]. SINS generally use micro-machined electrome-

chanical systems (MEMS) gyros or optical gyros [16]. This paper will only cover

the basic operation of a mechanical gyro because the optical and MEMS gyros were

developed using the basic principles of mechanical gyros. The typical two-degrees-of-

freedom mechanical gyro is made up of a spinning wheel (called the rotor), an inner

and outer gimbal, and angle pick-off sensors. When the rotor is spinning, “it defines a

direction in space that remains fixed in the inertial reference frame” [16]. By having

this fixed frame of reference, rotation can be detected. Titterton and Weston give

a very in-depth look at the physics behind this phenomenon. To paraphrase their

description, the gimbals of the gyro are fixed to the aircraft and move with the body

reference frame, with the rotor suspended along the spin axis inside the gimbals, it is

able to maintain its direction of rotation and stays true to the inertial reference frame.

The “orientation of the case (gimbals) of the instrument with respect to the direction

of the spin axis” [16] can be measured and then used in the coordinate transformation

to find out the attitude of the aircraft in the navigation frame. A typical SINS will

have three gyros, one to measure the roll rate, one to measure the pitch rate, and one

7



to measure the yaw rate. These rates are then used to determine the attitude of the

aircraft.

Just like with accelerometers, there are errors associated with gyros and they

can be viewed in Table 2.1.

Once the angle rates have been measured, this information, along with the mea-

sured accelerations along each axis, will be passed to on-board computers to calculate

the actual position of the aircraft. The accelerometers and gyroscopes are packaged

together in an inertial measurement unit (IMU). Once the on-board computer system

is added, the total system is called an inertial navigation system (INS).

2.2.3 Inertial Navigation System Aiding. Inertial navigation systems need to

be aided when used over extended periods of time. The definition of extended, in this

case, is based on the grade of INS being used and the application. Table 2.2 shows

the magnitudes of the INS errors associated with three grades of inertial systems:

Navigation (H764-Q), Tactical (HG-1700), and Commercial (Crista IMU).

Figure 2.1 shows the difference in uncertainty as a function of time for each

grade, using the parameters listed in Table 2.2. From this figure, it is clear that a

Commercial grade INS would not be sufficient if the application required a solution

within 1 deg of latitude after 30 minutes of travel. Instead, the navigation grade INS

would be necessary to achieve this level of accuracy.

Navigation grade inertial systems are larger in size and more expensive than

tactical and commercial grade inertial systems. For systems that are expendable,

such as missiles, bombs, micro-air vehicles (MAVs), etc., the cheaper the system the

better. However, these systems require a high level of accuracy to be effective. These

realities have led to many different aiding techniques to assist the inertial systems

with their navigation solutions.
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Figure 2.1: Inertial navigation system performance comparison. (a) The latitude
uncertainty of a typical navigation-grade INS over a 30 minute period.
(b) The latitude uncertainty of a typical tactical-grade INS over a 30 minute period.
(c) The latitude uncertainty of a typical commercial-grade INS over a 30 minute
period.

2.3 Aiding Techniques

Kalman filtering has proven to be an effective algorithm when using aiding

measurements with an INS [16]. Many navigation measurement systems are avail-

able to aid the INS. Some of these techniques use sensors on-board the vehicle, such

as Doppler radar, altimeters, magnetic measurements, terrain-referenced navigation,

scene matching, and continuous visual navigation [16]. Other techniques are external

to the vehicle, such as radio navigation aids, satellites, star trackers, or ground-based

radar trackers [16]. For the purposes of this research, INS-aiding via magnetic mea-

surements will be discussed.

2.3.1 Kalman Filtering. A Kalman filter (KF) is “an optimal recursive data

processing algorithm” [8] that is used to generate an estimate of the states based

on current measurement values and all previous measurements. However, the KF

does not require specific knowledge of previous measurements. Instead, the KF uses

the information stored in the previous estimate and covariance associated with this

estimate to account for this prior information. There are three basic assumptions that

must be met in order for the KF to be the optimal estimator.
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Table 2.2: IMU Performance Parameters from [18]

Parameters (units) Crista IMU HG-1700 H764-G

Sampling interval (ms) 5.0 10.0 3.906
Gyro bias sigma (deg /hr) 1800 1.0 0.0015
Gyro bias time constant (hr) 1 1 1

Angular random walk (deg /
√
hr) 2.23 0.3 0.002

Gyro scalefactor sigma (PPM) 10000 150 5
Accel bias sigma (m/s2) 0.196 0.0098 2.45 × 10−4

Accel bias time constant (hr) 1 1 1

Velocity random walk (m/s/
√
hr) 0.261 0.57 0.0143

Accel scalefactor sigma (PPM) 10000 300 100

These assumptions are that the system dynamics can be modeled as a linear

system and that measurement noises are both white and Gaussian [8]. With these

assumptions in mind, the system model used in a KF is comprised of a dynamics

matrix, F, a matrix that captures the intensities of the noises driving the system

model, Q, and a matrix that describes how control inputs affect the outcome of the

system, B. These matrices satisfy the stochastic differential equation

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.2)

where w(t) represents the white, Gaussian, driving noises on the system [8]. The ma-

trix Q is defined as E
{
w(t)w(t)T

}
= Qδ(t). In real-life applications, measurements

are generally available at discrete points in time. Therefore, in order to combine the

state estimate with the measurements, Equation 2.2 must be discretized, which re-

sults in a stochastic difference equation. The equivalent stochastic difference equation

for Equation 2.2 which is developed in [8], becomes,

x(tk+1) = Φ(tk+1, tk)x(tk) + Bd(tk)u(tk) + wd(tk) (2.3)
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where

∆t = tk+1 − tk

Φ(tk+1, tk) = eF(tk)∆t

Bd =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ

E[wd(tk)wd
T (tk)] =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)Q(τ)GT (τ)ΦT (tk+1, τ)dτ.

(2.4)

2.3.1.1 Propagation and Measurement Updates. Using the system

model as defined above, the first step in the Kalman filtering process is to propagate

the current information forward in time. This step is a prediction of how the states

will change over a specific time interval, ∆t. For example, if a vehicle moves forward

from an initial position, x0, at a constant velocity of 60 mph for 10 minutes (∆t), the

vehicle will be exactly 10 miles ahead of its initial position, if the system model is

perfect and there are no other error sources associated with the vehicle. The system

dynamics matrix, F, contains the behavior information of the system, in the case

of the example, it would reflect a constant velocity. The actual velocity of 60 mph

would be provided in the initial condition for the system. The KF advances the state

estimates based on the system model, but then estimates the uncertainty of that state

estimate by adding the white, Gaussian noises. This is done by applying x̂(t+k ) = x0

and P(t+k ) = P0 to

x̂(t−k+1) = Φ(tk+1, tk)x̂(t+k ) +Bdu(tk) (2.5)

P(t−k+1) = Φ(tk+1, tk)P(t+k )ΦT (tk+1, tk) + Qd(tk). (2.6)

where x̂(t+k ) is the post-measurement update state estimate at time tk, x̂(t−k+1) is

the propagated (pre-measurement) state estimate at time tk+1, P(t+k ) is the post

measurement filter covariance, and P(t−k+1) is the propagated filter covariance.
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With the state estimates propagated, the next step is to combine the measure-

ment data, when it is available, with the propagated state estimate. This is done

using

z(tk) = H(tk)x(tk) + v(tk) (2.7)

K(tk) = P(t−k )HT (tk)[H(tk)P(t−k )HT (tk) + R(tk)]
−1 (2.8)

x̂(t+k ) = x̂(t−k ) + K(tk)[z(tk) − H(tk)x̂(t−k )] (2.9)

P(t+k ) = P(t−k ) − K(tk)H(tk)P(t−k ) (2.10)

where z(tk) is the measurement equation, H(tk) is the output matrix, and v(tk) is the

measurement corruption noise, which is white and Gaussian [8]. The matrix K(tk)

is the Kalman Gain. This is a ratio that tells the filter how much weight should be

applied to the filter estimate and to the measurement. For instance, if the system

estimate has a large uncertainty in relation to the measured state values, then K(tk)

would drive the filter’s post-measurement estimate, x̂(t+k ), towards a value closer to

the filter’s estimate prior to measurement incorporation, x̂(t−k ).

2.3.1.2 Kalman Filter Implementation For Nonlinear Systems. As

mentioned earlier, the above KF equations are based on the assumption that the

system dynamics are linear. However, systems operating in the real-world are seldom

linear over all operating conditions. In order to meet this assumption, the system

dynamics must be linearized. There are two different KF types that use linearization,

the linearized KF (LKF) and the Extended KF (EKF) [7]. Each type uses the same

procedure to linearize the dynamics equations, but differ in the operating point used to

linearize about. The linearization procedure begins with a nonlinear system, described

by Maybeck as

ẋ = f [x(t),u(t), t]. (2.11)

The linearized KF is developed by calculating the Taylor series that describes this

differential equation about some nominal condition and then ignoring the higher-
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order terms [8]. For the general case presented here, the Taylor series expansion is

found to be

˙δx(t) = F(t)δx(t) + B(t)δu(t) (2.12)

where

F(t) =
∂f
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(2.13)

and xo(t), uo(t), t are the nominal conditions. The complete derivation of these

equations can be viewed in [8].

Using this method, there are two options for choosing the nominal conditions.

The first method is to design the KF to use a dynamics matrix that does not change

after the initial linearization, meaning f(t) is linearized about a known nominal tra-

jectory or about a set of conditions known to be marginally nonlinear [7]. This is the

LKF. The second method relinearizes the dynamics matrix about each filter estimate.

This method, used in the EKF, takes into account the fact that the filter is providing

the optimal estimate at any given time, which makes this method more accurate in

cases where a nominal trajectory is not known in advance or when the system varies in

a highly nonlinear fashion [7]. An example of the differences in performance between

these two methods can be viewed in [7].

2.3.2 Magnetic Field Based Navigation. Magnetic fields have been observed

by humans for centuries. Plato wrote of rocks that were magnetically attracted to

other rocks in 400 BC [1]. The Chinese developed a magnetic compass between 300

and 200 BC that was used to align construction with the Earth’s magnetic fields; this
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compass was made to look like the big dipper, so that the end of the bowl would

point in the horizontal northward direction, also like the big dipper [1]. From these

early observations and uses, merchants began using compasses to navigate to their

various trading locations. This was the start of the compass navigation used to today.

Compasses use the magnetic properties of repulsion and attraction to determine which

direction is north relative to the users current position. As demonstrated by Columbus

and many other early explorers, not understanding the nature of the Earth’s magnetic

field can cause confusion when trying to use the Earth’s magnetic field to navigate

on the Earth [1].

2.3.2.1 Brief Description of the Earth’s Magnetic Field. Magnetic

north, or the point that compasses point to, is currently offset from the geographic

north pole, or the Earth’s spin access, by about 12◦ in latitude [1, 14]. However, the

pole location is not stationary, which causes the location of magnetic north to rotate

around the geographic pole every 2,000 to 3,000 years [1]. This offset is caused by the

nature of the Earth’s magnetic field.

The Earth’s magnetic field is often viewed as a large dipole magnet, that is

a magnet that has two opposing poles (generally termed north and south poles) at

each end [1]. Campbell points out that the Earth’s magnetic field acts like a dipole,

but is not actually a dipole magnet. The magnetic field that surrounds the Earth

comes from currents that are induced by “the outer-core region of the Earth”, which

is composed of “a hot and dense liquid of highly conducting nickel-iron”, and “the

Earth’s spin and shape” [1]. Together these characteristics form a current-loop that

generates a magnetic field that acts similar to a dipole magnet. Figure 2.2 shows the

different layers of the Earth, as well as the magnetic field surrounding it [1]. From

this illustration, it can be seen that the Earth’s magnetic field can be observed from

any position on the Earth. While the main field of the Earth’s magnetic field is fairly

constant, there are a number of factors that can cause variation in the intensity of

the magnetic field at any given time and place.
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Legend:

Solid Inner Core

Liquid Outer Core

Direction of Earth’s Rotation

Figure 2.2: Illustration of the Earth’s main dipole magnetic field. The liquid outer
core, along with the Earth’s rotation is believed to be the source of the Earth’s dipole
like magnetic field [1].

Campbell highlights two of the naturally occurring variations. The first is caused

by an alteration in the Earth’s electrical conductivity, which can be caused by “a major

change in the groundwater content at a deep subsurface fracture. . .or when a highly

conductive active magma chamber at a volcanic site moves before an eruption” [1].

The second cause is a result of a change in the magnetic domain boundaries of rocks

due to increased external stress [1]. Campbell describes this by stating this change is

brought about “as a result of the loading of rock surfaces as a major dam is filled or at

a volcano as a result of a change in the magma chamber pressure on the surrounding

rock material” [1].

In addition to variations of this nature, deposits in the Earth’s crust also con-

tribute to local variations in the observed magnetic field [10,19]. These local variations

have more of an effect closer to the Earth’s surface. As altitude is increased, the inten-

sity of the magnetic field has less variation due to these deposits in the crust [10,19].
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Some other factors that can add to these variations are the effects on the Earth’s

magnetic field due to magnetic storms, the moon, the sun, and the ionosphere [10].

There are also artificial disturbances that perturb the Earth’s magnetic field [10].

These artificial disturbances are caused by electrical currents running through any

type of metal or conducting structure. In buildings, walls are often reinforced with

steel rebar, newer construction projects use steel studs in interior walls. Steel beams

used to support the floors of buildings add to the problem, as well as pipes, wires,

and electric motors or equipment [10, 13].

2.3.2.2 Biological Examples of Magnetic Field-Aided Navigation. The

Earth’s magnetic field, as described in Section 2.3.2.1 is used by a number of animals

to help them find their way to mating areas, migration locations, and moving around

their habitats [6]. Two animals that are known to use the Earth’s magnetic field to

gain positional information during their long-distance migrations are the loggerhead

sea turtle and the pied flycatcher [6].

The loggerhead sea turtles migrate from their hatching location along the east

coast of Florida to an area called the North Atlantic gyre and then back to the south-

eastern United States [6]. Experiments conducted by Lohmann and Lohmann showed

that loggerhead turtles can measure the magnetic inclination angle of the Earth’s

magnetic field and the magnetic field intensity [6], and that they use this to help

them navigate. The central European pied flycatcher’s begin their migration in cen-

tral Europe and then fly a course that prevents them from having to cross areas that

are not conducive to survival (i.e. the Alps, the Mediterranean Sea, and the central

Sahara) [6]. The path taken by these birds has them fly in a southeasterly direction

and then, at a specific point, turn and continue their migration. The experiment used

to investigate this phenomenon used the magnetic fields associated with the various

locations along the path of their migration [6]. The result was the pied flycatchers

turned to the same direction, and the direction of their normal migration route, when
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the magnetic field was artificially changed to match that of the true magnetic field at

the location where a heading change would normally occur [6].

These are just two examples of animals naturally using the characteristics of the

Earth’s magnetic field to navigate their way around the Earth. Several other animals

have undergone the same sort of experiments and the use of magnetic fields has been

shown [6]. These studies have helped humans to better understand how animals

navigate around the globe and given researchers ideas for new methods of navigation

using the Earth’s magnetic field as a source for position and attitude information.

2.3.2.3 Navigation Techniques Using the Earth’s Magnetic Fields.

Early on in global explorations, explorers believed that their compasses pointed to a

“magnetic mountain” [1], as opposed to a magnetic field generated by the composition

of the Earth. As Spanish merchants began to move outside of “a narrow longitudi-

nal sector along the west coast of Africa”, it became obvious that this “magnetic

mountain” was not a true stationary mountain aligned with true north as previously

thought [1]. This observation led scientists to begin examining the true nature of

the observed magnetic field. Based on their studies, new methods of navigation were

developed. One of these breakthroughs was the use of declination angles to account

for the observed difference between magnetic north and true north. These are angles

that can be added (or subtracted) to the magnetic north heading to find the heading

for true north. For maritime applications, as the ship experiences changes in longi-

tude, the declination angle will also change [1]. To keep track of this, the declination

angles must be known for all locations along the path of travel. This advance allowed

for explorers, merchants, and anyone else wanting to navigate using a compass and

map to accurately find their destination. This type of navigation is still taught today

and is effective when GPS is not available and in environments where a compass will

provide accurate readings.

Magnetic fields are also used to determine which direction a vehicle is facing, also

known as its heading. This is an important tool as vehicles become smaller because
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heading measurements generally come from gyroscopes, and accurate gyroscopes are

generally bulky [16]. For outdoor applications, this type of aiding is very effective,

assuming the declination angle is known. For indoor applications, the use of electronic

compasses is not as straight forward. As mentioned in Section 2.3.2.1, there are many

disturbances present in the indoor environment. While there are a number of different

ways to reduce the impacts of these disturbances, the heading provided in indoor

applications still does not meet the accuracy needs of many indoor applications [13].

It is apparent that there are many different ways to use the Earth’s magnetic

field in navigation. However, each of the above methods are impacted by variations

in the Earth’s magnetic field. Titterton and Weston suggest using a map of magnetic

anomalies to estimate the vehicle’s position [16]. This method relies on magnetic

anomaly maps and the stability of such anomalies. However, since the anomalies are

the measurement, the anomalies will not interfere with the measurements like when

using an electronic compass indoors for heading reference [13]. Instead, assuming

they are stable, or vary in a quantifiable way, the more variations in a given location,

the more unique the magnetic “fingerprint” [3]. Figure 2.3 shows an example of this

“fingerprint” for an indoor environment.

This technique has been demonstrated in the outdoor environment on an air-

craft [19]. Wilson, Kline-Schoder, Kenton, Sorenson, and Clavier use maps of “aero-

magnetic anomalies”, which are found by taking the difference of the expected mag-

netic magnitude and the actual measured local field [19]. The approach outlined

in [19] uses only the magnitudes of the magnetic field anomaly vectors. By doing this,

Wilson et al. do not take advantage of all the information available from the magnetic

field. The experiment is conducted using a three-axis magnetometer, but the three

measured values are then combined to find the total magnitude of the magnetic field.

The terrain navigation approach outlined in the next section will show a way to use

these three different values together, in order to come up with a position solution.
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Figure 2.3: Map of a one square meter magnetic fingerprint generated from mag-
netic field data collected in a hallway at the Air Force Institute of Technology.

2.3.2.4 Magnetic Field Navigation Using a Terrain Navigation Approach.

Terrain navigation, in general, is based on measuring the terrain topography and

then correlating this measurement with a position on a map [11]. The depth or

height measurements often used in these methods are similar to the magnitudes of the

magnetic field. Early methods of terrain navigation used single beam measurements

to determine the location; this method was not very accurate in flat-bottomed areas,

which do not have enough variation to determine the location of the measured position

[11]. Modern terrain navigation methods use many more beams to measure a broader

area, which provides more information; hence making it easier to pinpoint the vehicle’s

position [11]. The terrain navigation approach described by Nygren in [11] describes

a method for combining multiple depth measurements with some sort of navigation

system (i.e. INS, Doppler velocity log (DVL), or a system that measures how far

the submarine has traveled by counting propeller turns) to determine a submarine’s

position.

Nygren’s method begins by defining the system model as

xt+1 = xt + ut + vt; t = 0, 1, 2, · · · (2.14)

yt = h(xt) + et (2.15)
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where ut is defined as the displacement from the previous position, xt, at time t, vt

is the random error associated with the navigation system that provided xt, h(xt)

is the function that maps a specific value of xt to the measurement domain, and yt

is the actual measurement collected by the sensor, which has a measurement error,

et [11]. Equation 2.14 is defined as the propagation equation and Equation 2.15 is the

measurement equation [11]. These equations can be combined using methods similar

to those discussed in Section 2.3.1.

If et is Gaussian, the likelihood function is

L(xt;yt) =
1

√
(

(2π)N σ2
e

)exp

(

− 1

2σ2
e

N∑

k=1

(yt,k − hk(xt))
2

)

(2.16)

where σ2
e is the measurement error variance and N is the number of measurements

to be incorporated [11]. Equation 2.16 is a mathematical way to determine how well

a measurement correlates to the information contained in the map [11]. Therefore,

the maximum value of L(xt;yt) is located at the point most likely to be the position

of the vehicle. Nygren points out that if this information is used by itself, then the

position estimate is considered a maximum likelihood estimate (MLE). For the case

of the submarine, or any vehicle with an additional navigation system, the MLE can

be combined with the position estimate from the propagation equation using Bayes’

rule [11]. As defined in [5], Bayes’ rule is

P [B|A] =
P [A ∩ B]

P [A]
(2.17)

which can be written equivalently as

P [B|A] =
P [A|B]P [B]

P [A]
. (2.18)

where P [A|B] is the probability of A given all values of B.
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For the application in [11], P [B|A] = p (xt+1|Yt+1), P [A|B] = L (yt+1|xt+1),

P [B] = p (xt+1|Yt), and P [A] becomes a normalizing constant, C, to ensure the

result integrates to one. The result of this is that the posterior probability density

function (pdf), meaning the pdf associated with the position estimate after the po-

sition measurement is incorporated, is found by combining the propagated position

pdf with the result of Equation 2.16. Mathematically, this can be written as

p (xt+1|Yt+1) ∼
L (yt+1|xt+1) p (xt+1|Yt)

C
. (2.19)

Once the posterior pdf is found, the position measurement can be calculated

using the point of maximum likelihood, found using Equation 2.16, as the position

measurement and the uncertainty associated with this position measurement, R, is

the radius of curvature of the posterior pdf at the point of maximum likelihood [11].

Then, as outlined by Nygren and using the KF techniques discussed in Section 2.3.1,

the position estimate is updated using this measurement data.

2.4 Summary

This chapter has shown why position aiding of inertial systems is necessary for

navigation. It has also described the nature of the magnetic fields that are present

outdoors and indoors, as well as the nature of the disturbances that create variations

in these fields. Numerous applications of using magnetic fields for navigation were

presented, followed by an introduction to the approach used in this research. Chap-

ter III will describe the methodology used to develop the magnetic aided position

algorithm used in this research.
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III. Methodology

T
his chapter will step through the design process that was used for creating

a magnetic field aided navigation system. The design process begins with

having the necessary hardware and software to complete the data collection and the

navigation algorithm because the first piece of required data for the design process is

the magnetic field intensity map. Without this initial data collection, feasibility of the

approach could not be verified. Therefore, this chapter will describe how the area to

be mapped was setup, as well as how the magnetic field intensity map was constructed

from the magnetic field intensity information. Once the map description is complete,

the system model is defined and used to generate the propagation equations that are

required for implementation of the KF. Following the development of the propagation

equations, the algorithm for generating the position measurement is detailed. The

KF update equations are then outlined.

With the basic aiding algorithm described, the next portion of this chapter

covers the implementation of a leader-follower algorithm. This algorithm uses a lead

vehicle to measure the magnetic field as it passes through an area. The lead vehicle

then passes the magnetic field data, its estimated trajectory, and any turn commands

to the follower vehicle. The follower vehicle then traverses the same area using only

the provided data and a motion measurement device. The designed magnetic field

aiding algorithm is used in conjunction with the data from the lead vehicle.

3.1 Required Equipment

One of the first steps in collecting and processing data is to be certain that

equipment is available and that it will meet the requirements of the design. For this

research, the only required equipment is three three-axis magnetometers and a laptop

that can collect and process all data pertaining to the magnetic field intensity map

and the magnetic aided position algorithm.
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3.1.1 Three-Axis Magnetometers. Initially, the three-axis magnetometers

present in the MIDG IIr were analyzed for their use as the magnetometers in this re-

search. However, the specifications for the MIDG IIr magnetometer were not available

from the manufacturer. While the magnetometer data is easily accessible through the

device interface, it is only intended to aid the heading information in the INS by pro-

viding the direction of the magnetic field intensity vector, but not the magnitude [15].

Therefore, it is not meant to be a stand-alone magnetometer and very susceptible

to temperature fluctuations and the readings might not be stable over long periods

of operation. Due to the design requirements of the device, the magnetic readings

produced by the MIDG IIr cannot be converted to a standard unit of measure. In

addition to not accurately measuring the magnitude of the magnetic field vector, the

readings from each MIDG IIr magnetometer were corrupted by scale factor errors

and biases. These errors could be accounted for using the least-squares approach, but

when the sensors were rotated 90◦, the readings on the sensor did not reflect such

a rotation (i.e., if the x-axis reading was 900 counts, when rotated 90◦ the y-axis

should read 900 counts (using a standard right-handed Cartesian coordinate frame)).

Without being able to accurately account for this error a different sensor was required.

The three-axis magnetometer used for this research was the Honeywell HMR2300r.

The HMR2300r is a stand-alone three-axis magnetometer designed to provide mag-

netic field intensity information for a number of applications. Figure 3.1 shows the

HMR2300r as used in this research. The HMR2300r has a measurement range of ±2

gauss with a resolution of < 70 µgauss [4]. For reference purposes, the Earth’s mag-

netic field ranges from approximately .3 gauss at the equator to .6 gauss at the

poles [14]. Based on the magnitude of the Earth’s magnetic field intensity, the se-

lected magnetometers should be able to measure all variations about the Earth’s main

field.

3.1.2 Laptop. The laptop used in this research was a Dellr Latitude D630

with an Intelr Centrinor 2.0 GHz processor. Overall, it is a standard notebook
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Figure 3.1: Photo of the Honeywell HMR 2300 as packaged for research

personal computer. LabVIEWr was used to collect the magnetic field intensity data

and Matlabr was used to complete all data processing in a post-processing mode.

3.2 Magnetic Field Intensity Map

As mentioned in Section 2.3.2.4, a map of the magnetic field intensities must

exist in order to use the terrain navigation approach. The map must contain loca-

tion specific magnetic field intensity data. This section will describe the two main

steps taken to generate these maps of magnetic field data. The first step covers the

data collection methods, while the second outlines the process used to transform the

measured data into a useable format.

3.2.1 Magnetic Map Data Collection. Following the approach used in [11],

the map data is actually a grid of measurements at specific locations. The envi-

ronment chosen to demonstrate this technique was two connected hallways near the

Advanced Navigation and Technology Center at the United States Air Force Institute

of Technology (AFIT). Figure 3.2 is a blueprint of the area used for this experiment,

with the actual hallways used outlined in red.

A right-handed, Cartesian reference frame is used in the development of the

algorithm, with the Z-axis being positive in the downward direction. Figure 3.2

shows the navigation reference frame in relation to the hallway and Figure 3.3 shows

the navigation reference frame with respect to the body reference frame. The positive
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Figure 3.2: Layout of test environment used for testing magnetic-aided INS. The
area is a hallway at the Air Force Institute of Technology.

X-axis is considered forward from the starting location (which is denoted by a star

in Figure 3.2), while the Y -axis extends from left to right. Using this orientation, the

grid spacing along the X-axis of the hallway needs to have the same spacing as the

sensors to ensure the grid points line up with the grid points generated for the side

hallway. To achieve the symmetric grid needed to build the map, the magnetometers

are arranged in a row, with .381 meters (15 inches) of separation between each sensor.

Therefore, the spacing between grid points, in both the X-direction and Y -direction,

is .381 meters. To ensure position accuracy, a tape measure was used to place pieces

of masking tape every .381 meters in the X-direction, and then every .381 meters in

the Y -direction down the side hallway. The uppercase X, Y, Z denote the navigation

frame, whereas, described in the following section, lowercase x, y, z denote the body’s

reference frame (the magnetometers are aligned with the body frame). As shown in

Figure 3.3, when the angle ψ is 0◦, the two reference frames are aligned.
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Figure 3.3: Relationship between the navigation reference frame and the body
reference frame.

The actual grid data was collected using the cart and sensor array shown in

Figure 3.4. A makeshift plumb-bob was used to ensure that the sensor array was

aligned with the grid point. Once aligned, a reading was taken and stored in a text

file. Due to the width of the hallway, the sensor array only covers half of the hallway.

Hence, this procedure is completed twice for the main hallway and twice for the side

hallway, resulting in a measurement being taken at 310 different locations, which

amounts to 930 grid points of magnetic field intensity data. At each point, a full

3-axis magnetometer reading was taken. With the data collected in a data array, the

next step is to turn this information into useful map data.

3.2.2 Magnetic Map Data Processing. Each three-axis magnetometer sends

its magnetic field intensity data as a package. Table 3.1 shows a subset of the data

collected using the magnetometers with labels to illustrate the data structure. By

loading this information into Matlabr , the data can be reorganized to generate three

different magnetic field intensity maps, one for each axis.

26



Figure 3.4: Photo of the data collection vehicle. Sensor array is located on board
in front of the laptop.

As shown in Figure 3.2, the area to be mapped is L-shaped. In order to convert

the magnetic data into a rectangular grid for Matlabr purposes, the measurements

from the side hallway must be transposed and then aligned with the main hallway

data. The area below the side hallway, but next to the main hallway, is unmapped

and zeros are assigned to this region. Table 3.2 illustrates the resulting data structure.

When using grid points as a reference of position, the smaller the grid spacing

the better. However, measuring a large number of grid points is time consuming and

sometimes prohibited by measurement devices. In order to achieve a smaller space

between measured grid points, the Matlabr interp() function is used to resample the

collected data at a closer interval. By using the interp() function, the grid spacing

is reduced from .381 m to .0381 m in all directions. Interpolating this data is valid

because only a few points are needed between the existing points and, from Table 3.1,

the variation between points appears to be fairly smooth.

3.3 System Model

As mentioned in Section 3.2.1, the reference frame used is not the body frame

of the vehicle. Instead, the relationship between the navigation reference frame and
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Table 3.1: Example of measured magnetic fields. This data is loaded into Matlabr

and manipulated to form three magnetic field intensity maps, one for each axis. The
units of the measured data is counts (1 gauss=15,000 counts). Each data point is
separated by .381 meters (15 inches).

Left Sensor Center Sensor Right Sensor

x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis

372 1442 3802 462 824 3067 1594 1671 4008
394 1447 3833 427 824 3081 1267 1744 3931
445 1514 3858 458 897 3103 1344 1968 3999
525 1587 3859 553 983 3123 1519 2017 4073
481 1020 2816 476 1045 3103 1423 2005 4069
394 1677 3844 451 1103 3062 1352 2233 3955
405 1667 3820 526 1111 2997 1638 2196 3920
383 1629 3804 530 1022 2955 1884 1520 3849
390 1595 3824 486 988 2958 1280 1847 3760
413 1595 3855 506 1042 3013 1494 2087 3891

Table 3.2: Data structure following reorganization to place data in positions that
correlate to their true positions in the test environment.

Side Hallway Data

Main 00000000000000000000000
00000000000000000000000

Hallway 00000000000000000000000
00000000000000000000000

Data 00000000000000000000000
00000000000000000000000
00000000000000000000000
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the body frame is 


VY

VX


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−sin(ψ) cos(ψ)
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

 (3.1)

where VY and VX are the velocities in the direction of the Y and X axes in the

navigation frame, Vb is the velocity of the vehicle in the body frame and ψ is the

heading angle of the body with respect to the navigation frame. The relationship

between the body frame and the navigation frame can be seen in Figure 3.3. For this

research, the heading (ψ) is assumed known at all times.

Therefore, the system model of the experimental vehicle is defined, in the navi-

gation reference frame, as











ṖY
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where PY and PX are the positions in the X and Y directions, uVY
and uVX

are the

control inputs used to control the velocity, and wvY
and wvX

are the white, Gaussian

noise driving the system, characterized by E[w(t)wT (t+ τ)] =




σ2

a 0

0 σ2
a





︸ ︷︷ ︸

Q

δ(τ).

3.4 Magnetic Aided Position Algorithm

The magnetic aided position algorithm is composed of three parts. The algo-

rithm begins with the system propagation equations, followed by the position mea-

surement generation algorithm, and then the measurement update equations. The

propagation and update equations are the standard KF equations presented in Sec-

tion 2.3.1, while the measurement generation algorithm uses the ideas presented in [11]

and Section 2.3.2.4.
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3.4.1 Propagation Equations. The propagation equations are found by ap-

plying the principles explained in Section 2.3.1, which begin with taking Equation 3.2

from the continuous-time domain to the discrete-time domain using a time step (∆t)

of .1 sec and using σa = .08 m/s2. The resulting propagation equations are
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(3.4)

Once the previous state estimate and covariance have been propagated forward

in time, the next step is to use the propagated state estimate to generate a position

measurement based on the magnetic field intensity measurement.

3.4.2 Measurement Generation. In terrain navigation, certain features or

characteristics must be matched to determine the position and then that matched

position is used as the position measurement for the KF. The same holds true when

using magnetic field intensity data [3,19]. The magnetometers measure the magnetic

field intensity and then the measurement generation algorithm determines how this

measurement relates to the vehicle’s position via a mapping function [11].

Using the process outlined in Section 2.3.2.4, the first step in finding the position

associated with a particular measurement is to combine the propagated pdf with the
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result of the likelihood function to determine the location that best matches the

magnetic reading. This is accomplished by:

1. Generating a discrete pdf that accurately describes the propagated position

estimate.

2. Calculating the likelihood function for all possible locations.

3. Combining the results from steps 1 and 2 using Equation 2.19 to determine the

position measurement, which is located at the maximum of the resulting pdf.

4. Calculating the measurement noise intensity, R.

3.4.2.1 Propagated PDF Generation. The propagated pdf contains

all of the information about the propagated state estimate generated by the filter.

For the two-dimensional Gaussian application, all necessary statistical information is

contained in a bivariate Gaussian pdf, represented by its mean and standard deviation.

These are computed as the propagated KF state estimate (x(t−k )), and covariance

P(t−k ). Since the magentic field intensity data used in the likelihood function is

discrete, the pdf must also be discrete to apply Bayes’ rule. For a bivariate Gaussian

pdf, the probability associated with a specific position on the pdf can be determined

using this equation, modified from [8],

fx (ξ) =
1

2πσY σX (1 − r2
Y X)

1/2
exp

{

− 1

2 (1 − rY X)2

[(
ξY − x−Y

)2

σ2
Y

+

(
ξX − x−X

)2

σ2
X

− 2rY X

(
ξY − x−Y

) (
ξX − x−X

)

σY σX

]} (3.5)

where σY and σX are the square roots of the associated terms from P(t−k ), xY (t−k ) and

xX(t−k ) are the KF propagated filter estimates (mean values), rY X is the correlation

coefficient between the two random variables, and ξY and ξX are the coordinates

of the points where the probability is unknown. The discrete posterior pdf is then

calculated by comparing all points (this is done by varying ξY and ξX in Equation 3.5)
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in a desired area to the filter estimate. In Matlabr , this can be done in a single step

using an array of different ξY and ξX .

3.4.2.2 Likelihood Function. In Equation 2.16, N is the number of dif-

ferent measurements to be used in determining the likelihood of a particular location.

Since three-axis magnetometers provide three different magnetic field intensities, one

along each axis, N = 3 for this application. Therefore, Equation 2.16 becomes

L(xt;yt) =
1

√
(
(2π)3 σ2

e

)
exp

(

− 1

2σ2
e

3∑

k=1

(yt,k − hk(xt))
2

)

. (3.6)

By using the Matlabr capability to do math element-by-element in one com-

mand, the x-axis measurement, the y-axis measurement, and the z-axis measurement

can be compared with their respective maps in one command. The result of this

Matlabr command is an array of numbers that show how likely it is that a given lo-

cation is the location of the vehicle, given the magnetic field intensity measurement.

The next step in the process is to combine the propagated pdf with the result from

the likelihood function.

3.4.2.3 Application of Bayes’ Rule. As noted previously, the final step

in determining the position measurement is completed by using Equation 2.19. The

result from Section 3.4.2.1 and 3.4.2.2 make up the numerator of the right-hand side

of Equation 2.19, repeated here for clarity. The maximum value of this data set, is the

point that will be used as the position measurement, z(tk), in the update equations.

3.4.2.4 Measurement Noise Intensity. From Section 2.3.1, it is known

that the KF needs a value for the measurement noise intensity. For applications such

as GPS, the measurement noise of the GPS measurement is the value assigned to R.

In this case, that will not be sufficient because the measurements generated by the

magnetometers are transformed into position measurements, but the errors are not

directly transformed from gauss to a unit of length. In addition to the errors not being
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in the proper units, any information that could be gained from the post-Bayes’ rule

pdf is dependant upon the filter’s uncertainty and, for a KF, the process noise and

the measurement noise (i.e., Q(tk) and R(tk), respectively) need to be uncorrelated or

accounted for by an augmented state matrix. The method proposed by Nygren in [11]

uses the radius of curvature of the posterior pdf to calculate R, but then augments the

KF to account for this correlated noise. Instead of using the correlated noise method,

a new method was developed to remove the correlation.

The new process begins with the point of maximum likelihood. Using this point

as the center, an array of indices is created in the X-direction and in the Y -direction.

The measured magnetic field intensity is then compared with the magnetic field in-

tensities of the surrounding locations using Equation 3.6. The result of the likelihood

function is then normalized to make the result a pdf. The standard deviations of

the two resulting pdfs (one for the X-direction and one for the Y -direction) will be

the square root of the measurement noise intensity, or the standard deviation of the

dataset. For a Gaussian pdf, ∼68% of the data is included within a 1σ-band. To

calculate the standard deviation of experimental pdfs, the point on the left side of

the mean where ∼16% of the data is in the tail can be found and the same for the

right tail. The distance that these two points are from the mean of the pdf are then

averaged to calculate the standard deviation (σY and σX) of the measurement noise

intensity, resulting in R =




σ2

Y 0

0 σ2
X



.

3.4.3 Measurement Update Equations. Once the position measurement used

for updating the KF estimate is calculated, the update portion of the KF remains

the same as described in Section 2.3.1.1. The only difference is that Equation 2.7 is

replaced by the position associated with the maximum value of the likelihood and

propagated pdf combination. Essentially, the measurement generation algorithm de-

scribed in Section 3.4.2 replaces the mapping function and measurement noise that

are represented in Equation 2.7.
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3.5 Leader-Follower Methodology

With the process for aiding a navigation system with magnetic field data devel-

oped, the next step is to investigate the feasibility of using the magnetic aided position

algorithm in a leader-follower scenario. The leader-follower scenario is defined by hav-

ing the first vehicle, the leader, move through an area while measuring the magnetic

field intensity along its path. The second vehicle would come along some time later

with the magnetic field intensity data from the leader, the trajectory estimate from

the leader, and any turn commands that were executed by the leader. The leader is

envisioned as being a vehicle that has several different sensors on-board to aid in its

travel through the indoor environment, as well as three magnetometers. The second

vehicle is envisioned as being a less equipped vehicle, with only one magnetometer

and some sort of motion measuring device (e.g., INS, odometer, etc.). The method

described in Section 3.4 is used as the basis of this leader-follower approach.

3.5.1 Map Generation. In Section 3.2, the map generated was composed

of six different sensor measurements and covered a rectangular, equally spaced grid.

For this application, the points of the map are generated according to where the

leader estimates it has traveled (which is different from where it actually traveled).

In order to accomplish this non-uniform grid, the Matlabr function griddata() can

be used. The leader collects magnetic field intensity data at a regular interval. In

this case, that interval is every .5 sec. Each magnetic field intensity measurement is

recorded by the leader, along with the estimate of the leader’s position at the time of

measurement. The magnetic field intensity measurements and the leader’s position

estimate are sent to the follower vehicle. The follower vehicle compares its three-axis

magnetometer measurements with those provided by the leader to determine where

it is located in reference to the leader’s estimated trajectory.

3.5.2 Follower Vehicle Control. The follower vehicle system model is similar

to the system model presented in Section 3.3 except there is an additional control

input, u2(t). This control input is used to track the estimated trajectory of the lead
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Diagram 3.1: Graphical example of the error (∆p). The error ∆p is used to determine
the amount of control applied to the follower to track the reference trajectory xr

vehicle. Therefore, the stochastic differential equation used to describe the follower is

ẋ(t) = F(t)x(t) + B(t) (u1(t) + u2(t)) + G(t)w(t). (3.7)

where the second controller, u2(t), is a proportional integral derivative (PID) con-

troller.

The PID controller was chosen because, as pointed out by Ogata in [12], PID

controllers are applicable to most control systems and, after attempting a proportional

controller, it became obvious that a different controller was needed. The PID con-

troller combines a proportional controller with an integral controller and a derivative

controller, which allows more flexibility in reaching various operating conditions. For

a tracking controller, the setpoint error is found by calculating the error between the

actual output of the plant and the reference trajectory. For this application, the goal

is to ensure the follower navigates within the area mapped by the leader. Therefore,

the cross-track error is the error that needs to be minimized. In order to calculate

the cross-track error (∆p), the distance between x̂(t+k ) and the leader’s estimated

trajectory must be found. The problem with calculating this error is that it cannot

be directly calculated because the leader’s trajectory is not defined for all points on

the map. The geometry of the problem is shown in Diagram 3.1.
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u
2

Figure 3.5: PID controller block diagram derived from [12] built in Simulink by
Matlabr

Using Diagram 3.1 as a reference, the distance ∆p is calculated by first finding

the distance between x̂(t+k ) and xr1, which is the closest defined point on the reference

trajectory located below x̂(t+k ). With the vector a calculated, the next step is to find

the distance between xr1 and the point c. This is completed by calculating aproj ,

which is the vector equivalent to a projected onto vector b. By adding aproj and xr1,

the location of c is found. Once the value of c is found, ∆p is found by subtracting

x(t+k ) from c.

With the input to the controller defined, the final step in designing the PID

controller is to determine the gain parameters that will ensure system stability and

provide the desired performance. The PID controller uses three tunable gain param-

eters (Kp, Ki, and Kd) to achieve the desired system performance. By tuning these

parameters, the response time of the system, the maximum overshoot, and the settling

time can all be changed to meet system performance requirements.

Figure 3.5 is the block diagram of the total system used in the follower vehicle.

The dashed box labeled u2 is the PID controller. As mentioned previously, the input

to the PID controller is the cross-track error.
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Figure 3.6: Step response of PID controller used to control the path of the follower,
without process noise applied.

In this case, the controller gain values were found by using the Matlabr Simulink

toolbox. The block diagram pictured in Figure 3.5 was executed in Simulink with vary-

ing values for the three gain parameters until the desired performance was achieved,

which was a rise time less than 1 sec, with minimal overshoot (this was defined as less

than .1 meters), and a settling time as close to 2 sec as possible. These values were

achieved with Kp = 10, Ki = .05, and Kd = 3.5. The step response of this controller,

with no process noise and u1 =




0

0



, is shown in Figure 3.6.

Figure 3.7 shows that the system will remain stable and track the desired trajec-

tory when process noise is present. The noise that was added for this step response,

was white, Gaussian noise with the same intensity, Q, as that used in the system

model introduced in Section 3.4.1. From these figures, it can be seen that the con-

troller is stable and adequately meets the desired performance characteristics.

3.6 Summary

This chapter has described the procedures used to design the magnetic aided

position algorithm. Chapter IV will show the results generated by implementing the

processes and procedures explained in this chapter.
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Figure 3.7: Step response of PID controller used to control the path of the follower,
with process noise applied.
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IV. Implementation

T
his chapter will show that the magnetic field variations are location specific, as

well as discuss the performance of the magnetic aided position algorithm in

environments that have small variations in the magnetic field. This was done using a

simulation that uses both simulated measurements and real measurements. The simu-

lated measurements were used to show the magnetic aided position algorithm’s ability

to track random trajectories, while the real measurements were used to demonstrate

that magnetic variations are stable enough in time to be used in such an application.

Following the analysis of the magnetic aided position algorithm, using the simula-

tion, the results from the leader-follower implementation will be examined. It will be

shown that the leader-follower implementation is more susceptible to areas of small

variation, and some methods for minimizing these impacts are presented.

4.1 Magnetic Field Intensity Variations By Location

To verify that the magnetic field intensity is location-specific, three different

datasets of magnetic field intensity were collected from different hallways around the

AFIT campus. The readings from the magnetic sensors could be different based

on actual magnetic field intensity in that area, as well as if the sensors were not

moved through the test areas in the same orientation. An example of this (using

a standard right-handed Cartesian coordinate system) would be a magnetometer’s

x-axis is aligned straight ahead and the reading along that axis is .6 milli-gauss, the

reading along the y-axis is .45 milli-gauss. When the sensor is rotated 90 degrees to the

right, the y-axis is now facing the direction the x-axis was facing initially. The reading

along the y-axis would now read .6 milli-gauss, while the x-axis measurement would

be -.45 milli-gauss. To show that the variations are due to the environment and not

the orientation of the sensors, three different test environments were chosen. The first

hallway chosen runs east to west and is on the second floor of an academic building.

For this data collection effort, a single magnetometer was moved 15.24 meters (50 ft),

from east to west, through the hallway. Figure 4.1 shows the relationship between the
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Figure 4.1: The orientations of the hallways used for demonstrating the uniqueness
of magnetic field intensities in an indoor environment. Two are on the second floor
and are parallel with each other, while the third is located on the third floor, directly
above hallway number 1.

three hallways. The second hallway tested was chosen because it is located directly

above the first hallway tested. Since the second hallway is oriented and in the same

position as the first (except for the difference in height because one is on the second

floor and the other is on the third), the data from these two hallways would be similar

if the magnetic field intensities are not unique between locations. The third hallway

was chosen to demonstrate the differences between two hallways that are on the same

floor and aligned with each other. As can be seen in Figure 4.2, each of the hallways

have their own unique magnetic fingerprints along each of the three magnetometer

axes.

4.2 Magnetic Field Intensity Map

Based on the method described in Section 3.2, the magnetic field intensity maps

have two main sections of data. The first is the magnetic field intensity data collected

in the main section of the hallway, and the second data used is the magnetic field

intensity data from the side hallway. The result of combining these two datasets

can be viewed in Figure 4.3, which is a magnetic field intensity map generated from
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Figure 4.2: The magnetic field intensities in three different hallways, all oriented
from north to south, were compared to show that each hallway has a unique mag-
netic field intensity fingerprint. The measurements were taken using one three-axis
magnetometer.

the x-axis magnetometer measurements. The data extending along the X-axis is

the data collected in the main hallway, while the data extending along the Y -axis

is the side hallway data, with the exception of the zeros that are entered into the

map as described in Section 3.2.2. While Figure 4.3 is a good illustration of how the

data collected by the magnetometers is organized, it does not provide the required

level of visual resolution to adequately analyze the information contained in the map.

Therefore, the magnitude and variation of the data in the two hallways can be seen

better when viewed separately.

4.2.1 Main Hallway Magnetic Field Intensity Map. Figure 4.4 shows the

main hallway’s magnetic field intensity map, using magnetic field intensity data col-

lected on 20 November 2008. Since the magnetic aided positioning algorithm relies

on differences in the magnetic field intensity to relate a magnetometer reading to

a position, unique patterns and values of intensity are desired. For the HMR2300,

the measurement noise has a standard deviation of approximately 25 counts, which

equates to approximately 1.67 milli-gauss. Variations that are significantly larger than
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Figure 4.3: Example two-dimensional magnetic map using the x-axis magnetometer
data.

1.67 milli-gauss will be largely unaffected by measurement noise. Due to the scale of

Figure 4.4, it is difficult to ascertain how many variations are below this threshold.

Figure 4.5 shows a smaller area of the hallway to increase the resolution. Based on

Figure 4.5, the main hallway does have variations large enough to be seen over the

magnetometer’s noise.

4.2.2 Side Hallway Magnetic Field Intensity Map. Figure 4.6 was gener-

ated using the same procedures as the map for the main hallway. Overall, there are

numerous variations present, but to see if the variations are sufficiently large, the

same procedure applied to Figure 4.4 was applied to Figure 4.6. Figure 4.7 is the

result of mapping a smaller section of the side hallway. The result is the same as

that shown with the main hallway. There should be enough variation to determine

distinct position information using the magnetic aided position algorithm. With the
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Figure 4.4: The main hallway magnetic intensity maps, generated per procedures
outlined in Section 3.2. Each plot represents a different magnetometer axis.
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Figure 4.5: A closer look at the variations present in the main hallway. Variations
smaller than 1.67 milli-gauss will not be visible above the noise of the magnetometer
and could prevent the magnetic aided position algorithm from estimating an accurate
position estimate.

map completed, the next step was to investigate the ability of the magnetic aided

position algorithm defined in Chapter III to estimate a vehicle’s trajectory.

4.3 Magnetic Aided Position Algorithm Results

This algorithm is implemented using two different approaches. The first ap-

proach uses a map of an entire area, which was measured ahead of time, to estimate

the location of a vehicle within the mapped area. The second method uses magnetic

field intensity data collected along a vehicle’s path, as it moves through an area.
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Figure 4.6: The side hallway magnetic intensity maps, generated per procedures
outlined in Section 3.2. Each plot represents a different magnetometer axis.
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Figure 4.7: A closer look at the variations present in the side hallway. Variations
smaller than 1.67 milli-gauss will not be visible above the noise of the magnetometer
and could prevent the magnetic aided position algorithm from estimating an accurate
position estimate.

The second method is used for a relative positioning solution (i.e., where is the sec-

ond vehicle located with respect to the first), as opposed to an absolute positioning

solution (where is the vehicle located in a defined area). The differences in these

two methods only impact which method of map generation to use, as described in

Section 3.2.2 and 3.5.1. Once the map is generated, the magnetic aided position al-

gorithm uses the map in the same way to estimate a vehicle’s position relative to the

positioning system associated with the map.
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4.3.1 Example Discrete Bivariate Gaussian PDF. As mentioned in Chap-

ter III, the first step in the magnetic aided position algorithm is calculating the dis-

crete bivariate Gaussian pdf. As mentioned previously, this pdf is centered around the

propagated state estimate and uses the associated propagated filter uncertainties. For

the example pictured in Figure 4.8, the position state estimate is x̂(t−k ) =




1.1565

2.2438





and P(t−k ) =




0.0513 0

0 0.4837



. The area in view was reduced to show more detail.

4.3.2 Example Likelihood Function Result. Using the same location as in

the pdf case, Figure 4.9 shows the result of Equation 3.6. The measurements for this

example were simulated based off of the truth data used in generating the map. For

this example, it is clear that there are three peaks. Any one of these peaks could be the

actual location of the vehicle. If the maximum value is chosen at this point this process

becomes a maximum likelihood estimator [11]. However, this result is combined with

the bivariate Gaussian pdf using Bayes’ rule, as discussed in Section 3.4.2.3.

4.3.3 Example Bayes’ Rule Implementation Example. The result of com-

bining the likelihood function and the bivariate Gaussian pdf is shown in Figure 4.10.

Since the two peaks of the likelihood function were so closely positioned, both are

still present after combination with the pdf. However, the magnitudes of these peaks

have been scaled according to their location from the filter’s estimated position. The

difference between the height of the peak located at approximately (1.75,1) and the

one located at approximately (2.4,1) is now noticeably larger. Also notice that the

peak located at approximately (1.5,3.2) is completely removed from the figure.

Choosing the point of maximum likelihood from the combination of the propa-

gated pdf and the likelihood result could result in the wrong location being chosen.

Choosing the wrong location could prevent the magnetic aided position algorithm

from accurately estimating its position. For the basic trajectory estimation case to be

presented, this phenomenon did not create a problem. However, in the leader-follower
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Figure 4.8: Example discrete propagated probability density function that will be
combined with the result of the likelihood function using Bayes’ rule.
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Figure 4.9: Example discrete likelihood function result that will be combined with
the result of the discrete probability density function using Bayes’ rule
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Figure 4.10: Example discrete post-measurement probability density function gen-
erated using Bayes’ rule to combine Fig. 4.8 with Fig. 4.9.

implementation it did create a problem. In order to reduce the effects of bad measure-

ments, several options could be implemented following the combination of the pdf and

the likelihood function. One method would be residual monitoring. If a measurement

was so many meters away from the estimate (this value would be determined based on

your system model) that measurement would be ignored. Another method would be

to ignore a measurement if there were multiple peaks within a pre-determined area,

this area would be determined by the uncertainty of the system model.

4.4 Magnetic Field Aided Trajectory Estimation

Two tests were developed to demonstrate the concepts from Chapter III and

the magnetic map information generated above. The first test consisted of two Monte

Carlo simulations that used simulated measurements generated from the map data

to estimate the trajectory of the vehicle. The second test used real magnetic field

intensity measurements to estimate the trajectory of a vehicle. Both tests used the

parameters shown in Table 4.1, with the exception of the vehicle starting position.

The values shown in Table 4.1 for the vehicle starting location are the values used for

the simulated measurements case. For the case with real measurements, there were

two different starting points, (X1,Y1)=(0,1.524) and (X2,Y2)=(0,1.905), all in meters

and with (0,0) being the bottom left corner of the hallway as oriented in Figure 3.2.
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4.4.1 Generated Trajectory Simulation. There are three basic steps used in

the Monte Carlo Simulations. The first step is the trajectory generation. Secondly,

the magnetic field intensity measurements are calculated from the map data using

the locations supplied by the generated trajectory (with an appropriate amount of

measurement noise added). The final step in this simulation is implementing the

KF with the system model and magnetic aided position algorithm developed in Sec-

tions 3.3 and 3.4. This simulated approach allows for large numbers of simulations

to be executed, which aids in determining the filter’s performance. If the simulation

is representative of the actual system, Monte Carlo simulations show the expected

performance of a system over a wide range of scenarios and conditions. For this im-

plementation, taking measurements along 100 known trajectories is unrealistic with

respect to time and instrumentation. The location of the magnetic measurement must

be known when it is collected. Based on the measurement update interval of the filter,

each trajectory requires 77 different measurements. This would amount to collect-

ing 7700 different points of magnetic data. With the current test equipment, taking

measurements for one trajectory (77 measurements) takes about 1 hour. A 100 run

Monte Carlo simulation takes about 2 hours. At the very least, the Monte Carlo sim-

ulation will verify that the algorithm operates as intended, and it provides a baseline

for comparison when real data is used. By understanding how the algorithm should

perform under the best conditions, when the real data is used differences between the

two can be used to determine areas of the simulation that do not accurately depict

what is really happening or to help identify possible limitations of the algorithm.

Once these limitations are understood, they can be investigated further to create a

more representative simulation, which would provide a more accurate algorithm.

While a Monte Carlo simulation is a good tool for the reasons discussed, an un-

derstanding of its limitations is key to using this tool. The first key is to understand

that there is never a true replacement for real data, but simulated data can work, in

conjunction with real data, to aid in getting a more complete picture, without the time

needed to collect large amounts of real data. If the simulation does not adequately
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match the real system, the simulation results will be invalid and not provide useful

information. In this case, if the measurement noise is not characterized correctly the

simulation results would be inaccurate compared to the real data tests. Another area

of the simulation that could be inaccurate comes from the fact that if the measure-

ment data falls between grid points on the map, the magnetic measurement at that

particular point is found by interpolating between two points that may have already

been interpolated. While interpolation data is valid to some degree, as discussed in

Section 3.2.2, interpolating interpolated data introduces another source of error into

the system that is not modeled. With these differences understood, the next step is to

describe the setup and show the results of implementing the Monte Carlo simulation.

4.4.1.1 Trajectory Generation. A nominal trajectory for this simula-

tion was defined as down the center of the main hallway, then, following a 90◦ turn,

down the center of the side hallway. The nominal trajectory is used to develop the

dynamics model of the system, as described in Section 3.3. Using the process noise,

as described in Section 3.3, the dynamics model is perturbed by white driving noise to

create a random trajectory that is centered around the nominal trajectory. The initial

attempt at generating this trajectory used σa = .08 m/s2. The initial attempt failed

because the vehicle trajectory had no control to keep it within the confines of the

hallway, which is physically impossible with a real vehicle. To overcome this physical

reality, the trajectory was controlled to keep within the physical boundaries of the

hallway. In addition to the control, if a trajectory was found to break the physical

barrier of the hallway, it was rejected and the trajectory was regenerated. Figure 4.11

shows a trajectory generated using this method.

4.4.1.2 Simulated Magnetic Field Intensity Measurements. The mag-

netic aided position algorithm requires magnetic field intensity measurements. The

measurements were generated from the magnetic field intensity data used to develop

the magnetic field intensity maps mentioned previously. At each point along the gen-

erated trajectory, a magnetic field intensity was found by matching the trajectory
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Figure 4.11: Example simulated trajectory used to test the filter’s ability to track
a random trajectory.

location with a location on the map of the hallway. If the data fell in between grid

points, the magnetic field intensity was interpolated at that particular point. Once

the true magnetic field intensity (the true magnetic field for this simulation was as-

sumed to be the magnetic field intensity data collected for the construction of the

magnetic field intensity map) was calculated for a given location, the white, Gaussian

measurement noise was added to each measurement to simulate the measurement

coming from a magnetometer.

4.4.1.3 Monte Carlo Results of Simulated Trajectories and Measurements.

Monte Carlo (MC) simulations are used to determine if a system or algorithm will

operate as desired. For this research, 100 MC runs were completed using two differ-

ent scenarios. Both scenarios used the magnetic aided position algorithm as described

throughout this research. However, the first was executed without knowledge of the

trajectory making the turn onto the side hallway, while the second used a control

input to make the turn.

As seen in Figure 4.12, the positioning solution generated by the magnetic aided

positioning algorithm achieves a root-mean-square (RMS) position error of less than

.4 meters, when the filter is not supplied with turn information. When the turn

command is provided to the filter, the RMS values (shown in Figure 4.13) drop below

.2 meters once the initial positioning error is resolved. These two figures show that the
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Figure 4.12: The RMS values for the magnetic aided position algorithm without a
turn command provided to the filter. Notice the decrease in performance following
the turn at approx. 80 seconds.

magnetic aided positioning algorithm is able to generate sub-meter level positioning

solutions.

Figure 4.14 shows the ensemble mean position error, the ensemble standard de-

viation, and the RMS value of the filter uncertainties for all 100 MC runs, when no

turn information was provided to the filter. Figure 4.15 shows the ensemble mean

position error, the ensemble standard deviation, and the RMS value of the filter un-

certainties. For reference, the turn takes place around 80 seconds, depending on the

randomly generated trajectory. The mean error associated with this filter was calcu-

lated by subtracting the true trajectory from the estimated trajectory. Figure 4.14

shows that the magnetic aided position algorithm accurately estimates the vehicle’s

position uncertainty for the entire test environment. As mentioned in the beginning

of Section 4.4.1, the goal of the MC simulation is to show that the magnetic aided

position algorithm does operate properly. Generally, a KF is said to operate properly

if the filter uncertainty accurately models the ensemble standard deviation of the re-

sults. The filter’s estimate of the uncertainty tracks the ensemble standard deviation

very well along the X-direction for both the filter that receives the turn command and

the filter that does not, Figures 4.14 and 4.15 respectively. However, in both cases

the Y -axis filter estimate is less optimistic in its estimate than the actual ensemble
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Figure 4.13: The RMS values for the magnetic aided position algorithm with a turn
command provided to the filter. Notice the smaller decrease in accuracy following
the turn.

statistics. While the estimation by both filters seems to not be impacted by this, both

achieve sub-meter RMS errors, understanding this minor discrepancy is necessary to

understanding how well the MC results relate to the real system.

The main source of the discrepancy between the ensemble standard deviation

and the filter’s uncertainty estimate was found to be due to a difference between

how the trajectory was generated and the model used in the KF. As mentioned in

Section 4.4.1.1, the random trajectories were controlled to keep them inside the con-

fines of the hallway. The control action is only applied to the Y -axis portion of the

trajectory along the main hallway and the X-axis portion of the trajectory along

the side hallway. The random trajectory is generated using the method described in

Section 4.4.1.1. After each time step, the distance between the center of the hallway

and the new position is compared. The distance between the two is then multiplied

by a scale factor and subtracted from the new generated position. The result of this

process is that the filter is estimating its uncertainty based on an acceleration uncer-

tainty of .08 meters per second squared, when the actual trajectory, for all simulated

runs, is varying less than this. Therefore, the MC runs have shown that the magnetic

aided position algorithm can provide positioning solutions within .2 meters (RMS)

when the filter has knowledge of the control inputs. In addition to this positioning
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Figure 4.14: Ensemble Statistics: The filter’s ability to track the trajectory is
contingent on the filter having the correct system model. In this case, the filter
model did not include any information about the 90◦ turn.

accuracy, the MC runs have also shown that the model used in the simulation is cor-

rect, with the exception of the control on the trajectory generation. With the MC

results understood, the next step is to examine how the algorithm performs when real

data is used.

4.4.2 Real Trajectory and Measurements. The second test used the same

process and algorithms as the first, but the trajectory was not generated via simula-

tion. Instead, the second test used a real trajectory that took measurements as the

cart moved along the pre-described trajectory. There were two different trajectories

used to test the algorithm using real measurements. Both trajectories were benign

in their variation around the hallway, as the filter’s ability to estimate its position,

given good measurements, was shown via the MC simulations. The goal of using real

measurements was to show that the magnetic field intensity in the indoor environment

does vary enough by position, but is stable enough in time to support using a map

collected at a previous point in time. The map data used in this portion is the same

map data used previously, but the measurements were collected on 5 December 2008.

4.4.2.1 Trajectory Generation. The first trajectory used to demon-

strate the use of real measurements is shown in Figure 4.16. To ensure that the tra-
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Figure 4.15: Ensemble Statistics: The filter’s ability to track the trajectory is
contingent on the filter having the correct system model. In this case, the system
model is correct and the filter and ensemble statistics match fairly well, which shows
the system model is accurate.

jectory used for truth matched the trajectory traveled, the measurements needed to

be taken from known locations. The simulation described previously in Section 4.4.1

used a time step of .1 seconds, an update rate of 1.5 sec, and a forward vehicle veloc-

ity of .5 meters per second. In order to match this criteria with a real trajectory, a

measurement needed to be taken at every second grid point. This was determined by

calculating the distance traveled between updates at the nominal velocity, (1.5 sec-

onds × .5 meters per second), the result of this showed that a measurement needed to

be taken every .750 meters. Recall that the grid points were located .381 meters (15

in) apart. The distance between two grid points was .762 meters, which falls within

the bounds of the system model.

Using this trajectory, the results, shown in Figure 4.17, show that the real

measurements are good enough to keep the vehicle in the hallway, but there are a

couple of places where the error exceeds 2 meters. Figure 4.18 shows the measurement

residuals of the first trajectory (the residuals, in this case, are found by subtracting

the post-update position estimate from the position measurement found using the

magnetic aided position algorithm). The locations corresponding to the large position

errors are associated with the locations that had large measurement residuals. This
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Figure 4.16: Real trajectory near center of hallway. This trajectory was the first
trajectory used to demonstrate the performance of the magnetic aided position algo-
rithm using real measurements.

means the magnetic field intensity measurement correlated with a position different

from the filter’s estimated position by a large margin. Figures 4.4 and 4.6 show that

there is not much variation in the middle of the hallway. This lack of variation could

lead to the large residuals seen in Figure 4.18.

To help determine if the lack of variation was really the problem, the second

trajectory, pictured in Figure 4.19, goes down the right-hand side of the hallway.

The same techniques used to generate the trajectory pictured in Figure 4.16 were

used to generate this trajectory. The position errors associated with going down the

side of the hallway is shown in Figure 4.20. The result is smaller errors and smaller

residuals, as shown in Figure 4.21. However, the errors are still significantly larger

than the errors generated using the MC simulation.

The trajectory estimation using real measurements was conducted using the

same system model as that of the MC simulation. The vehicle was defined as moving

at .5±.08 meters per second. From Figures 4.16 and 4.19, it can be seen that there was

virtually no variation in the cross-track direction. This means in the main hallway,

there was very little variation in the Y -direction and on the side hallway there was

very little variation in the X-direction. Using this observation, the system model was

changed to reflect this (σa was changed from .08 meters per second squared to .02
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Figure 4.17: Position error plots showing the filter performance using non-simulated
measurements from the trajectory shown in Figure 4.16.

meters per second per squared). Figures 4.22 and 4.23 show the improved results for

the trajectory down the middle of the hallway and the trajectory down the side of the

hallway, respectively. The position error for the first real trajectory went from having

a maximum position error of over two meters to having a position error of a meter or

less. The second trajectories performance improved just as dramatically. Originally

it had a maximum error of approximately 1.5 meters, and now the maximum error

for that trajectory is .6 meters. This illustrates the importance of having the correct

system model in the KF.

4.5 Leader-Follower Algorithm Implementation

The leader-follower algorithm is a relative positioning algorithm that uses mag-

netic field data, measured by the leader, to aid the position estimate of a follower.

The follower then uses this position estimate to control its path to remain close to the

path of the lead vehicle. The implementation as designed in Section 3.5 would not

work for a σa of .08 meters per second squared. The reason for this is that the second

vehicle must follow the trajectory of the first vehicle reasonably well, or the second

vehicle will not remain inside the span of the leader’s measurements. If the follower

is outside of the span of the leader’s measurements, the follower will not be able to
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Figure 4.18: Measurement residuals of the first non-simulated trajectory. The large
position errors in Figure 4.17 correspond to a bad measurement value. These can be
attributed to areas with little magnetic variation.

estimate its position. After simulating the leader-follower algorithm using different

values for σa, the largest value successfully implemented was .02 meters per second

squared, which was used in both the lead vehicle’s system model and the follower

vehicle’s system model.

4.5.1 Leader-Follower Performance Analysis. With the lead vehicle tra-

jectory constant and magnetic measurements taken along this trajectory with three

sensors, the follower tracking ability was tested using 50 simulation runs and a σa of

.02 meters per second squared. Out of the 50 runs, zero were completed or successful.

A completed run is defined as a run where the follower makes it at least 16 meters

down the side hallway. A successful run, for this implementation, is defined as a run

that tracks the leader at least 10 meters down the side hallway, which is 55 percent of

the side hallway length and approximately 90 percent of the total path. The reason

for the 10 meter threshold is there is a section of the side hallway (right around 10

meters) that does not have a lot of variation. As mentioned in Section 4.2.1, if an

area does not have large variations, the magnetic aided position algorithm will not

accurately determine its position. For the current leader-follower implementation,

this problem is magnified, because the follower vehicle is trying to ascertain where it
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Figure 4.19: Real trajectory near right side of hallway. This trajectory was the
second trajectory used to demonstrate the performance of the magnetic aided position
algorithm using real measurements. This trajectory takes advantage of the large
variations present near structures such as walls and floors.

is with respect to the leader’s estimated trajectory. If the follower picks the wrong

location, the control input could command the follower in the wrong direction.

For example, if the position estimate generated by the follower vehicle is to the

right of the leader’s estimated trajectory, but the follower vehicle is actually to the left

of the leader’s estimated trajectory, then the control input generated by the magnetic

aided position algorithm will command the follower vehicle to go further to the left,

which will take the follower vehicle further from the reference trajectory. If there is

enough variation in the magnetic field at this commanded position, the magnetic aided

position algorithm will realize the follower is to the left of the reference trajectory with

the next estimate and correct its position accordingly. If there is not enough variation,

then the magnetic aided position algorithm could estimate the vehicle’s position as

being to the right of the reference trajectory again and command the vehicle further

to the right. This phenomenon was the cause of all unfinished runs in the lead-follower

implementation. Figure 4.24 shows one case of this phenomenon.

To avoid the phenomenon created by the lack of large variations, two different

approaches were implemented. The first implementation was a fix to the algorithm

that moves the actual vehicle back to the center of the hallway. This method, as
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Figure 4.20: Position error plots showing the filter performance using the non-
simulated measurements from the trajectory shown in Figure 4.19.

implemented, is primarily a tool to show that the algorithm would function properly

if the vehicle managed to move back to the path of the lead vehicle (perhaps by turning

away from walls). In the simulation, this was done by monitoring the vehicle’s actual

position in the hallway. If the vehicle reached a point where it would be physically

outside the confines of the hallway, much like the case of the generated trajectory

in Section 4.4.1, then the vehicle’s position would be reset to the opposite side of

the center of the hallway. This implementation improved the performance, but did

not eliminate the failure mode. The number of successful runs out of 50 using this

approach went from 0 to 18 and the number completed went from 0 to 2.

The second approach used an additional sensor in the lead vehicle. The goal

of this approach was to show that the addition of a fourth sensor would widen the

sensed magnetic field by the leader, allowing for the follower to be farther from the

leader’s trajectory, but still have valid magnetic field measurements. This method

improved the performance over the three sensor case, with and without the position

reset. Out of 50 runs using this approach, 9 were completed and 18 were successful

in tracking the leader for over 90 percent of the total trajectory.

To increase the successful tracking percentage, the second approach was com-

bined with the first approach. By adding a fourth sensor and resetting the vehicle’s
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Figure 4.21: Measurement residuals of the second non-simulated trajectory. The
large position errors in Figure 4.20 are not as large as those in Figure 4.17. This is
due to greater magnetic field variation along the side of the hallway, which equate to
more accurate position measurements.

position if the vehicle “hit” a wall, the number of successful runs was 36 and the

number of completed runs was 23. Table 4.2 shows the different levels of performance

achieved by each implementation. As expected, adding more sensors and having

some way of monitoring the validity of a position estimate (i.e., residual monitoring,

likelihood thresholding, etc.) has the highest level of success.

4.5.2 Leader-Follower Estimation Error. As mentioned in previous sections,

the goal of the leader-follower algorithm is to have the follower track the trajectory of

the leader. However, since the lead vehicle only has an estimate of its true trajectory

(this is the reference trajectory passed to the follower), the follower can only track the

estimated trajectory of the leader. Therefore, the position estimate generated by the

follower is in the wrong reference frame to compare it to the leader’s true trajectory.

The goal of the leader-follower algorithm is to show how well the follower follows the

path of the leader. In order to do this, the leader’s estimated trajectory must be

resolved in the reference frame of leader’s actual trajectory. Once this transformation

is executed, the follower’s position can be determined with respect to the leader’s

position. The difference in reference frame means that each position measurement
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Table 4.1: Parameter values used for the simulations that demonstrate the mag-
netically aided INS.

Parameter Value

Time Step ∆t 0.1 sec
Initial X-Direction Velocity (VX) .5 m/s
Initial Y -Direction Velocity (VY ) 0 m/s

Initial Filter X-Position (PX) 0 m
Initial Filter Y -Position (PY ) 0 m

Initial Vehicle X-Position (PX) 0 m
Initial Vehicle Y -Position (PY ) 1.145 m

Initial X-Position Uncertainty (σPX
) 1.5 m

Initial Y -Position Uncertainty (σPY
) 1.5 m

Acceleration Uncertainty Both Axes (σa) .08 m/s2

Magnetometer Measurement Noise (σmeas) 1 milli− gauss
Filter Update Interval 1.5 sec

Table 4.2: Performance comparison of the leader-follower algorithm, using different
techniques to aid the magnetic aided position algorithm in areas of small variations.
The number of completed runs are the runs where the follower made it at least 16
meters down the side hallway, whereas a successful run was considered runs that made
it to 10 meters, the successful run column includes the completed runs.

Implementation
Number of
Complete
Runs

Number
of
Successful
Runs

Number
Past
Turn

Number
Not Making

Turn

Three Sensors No Pos. Reset 0 (0%) 0 (0%) 0 (0%) 50 (100%)

Three Sensors Pos. Reset 2 (4%) 18 (36%) 33 (66%) 17 (34%)

Four Sensors No Pos. Reset 9 (18%) 18 (36%) 38 (76%) 12 (24%)

Four Sensors Pos. Reset 23 (46%) 36 (72%) 41 (82%) 9 (18%)
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Figure 4.22: Position error plots showing the filter performance using the non-
simulated measurements from the trajectory shown in Figure 4.16 and σa = .02 m/s2.

generated by the magnetic aided position algorithm is offset by the difference between

the leader’s true trajectory and the leader’s estimated trajectory. The error between

the follower’s position estimate and the leader’s position estimate is calculated for use

in the PID controller as described in Section 3.5.2. However, to view the follower’s

trajectory with respect to the leader’s true trajectory the follower’s actual position

must be transformed into the leader’s reference frame. The process used to complete

this transformation can be viewed in Appendix A.

The follower’s true trajectory is plotted with the leader’s estimated trajectory

in Figure 4.25a. However, as mentioned previously, the result in Figure 4.25a does

not show how well the follower tracked the leader. Figure 4.25b shows the corrected

follower trajectory. The case shown is for a leader trajectory that veers to the right of

the reference trajectory along the main hallway and then veers to the left on the side

hallway. There is a gap in the follower’s trajectory as the actual trajectory crosses

over the reference trajectory in Figure 4.25. This is a result of the calculation used

to transform the follower’s trajectory into the leader’s reference frame. If the two

vehicle’s were actually observed through this process, there would be no break in

the data. The data presented here is from the four sensor implementation, with and

without the position reset.
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Figure 4.23: Position error plots showing the filter performance using the non-
simulated measurements from the trajectory shown in Figure 4.19 and σa = .02 m/s2.

To further illustrate the leader-follower implementation, Figure 4.26 shows the

same information as Figure 4.25, but for a true trajectory that veers to the left along

the main hallway. Notice the sawtooth-like variation in the follower’s trajectory. This

is introduced by the position reset routine described in Section 4.5.1. The two figures

just presented demonstrate that the transformation works for almost all situations.

The only error in this process comes from a singularity when the two leader’s trajec-

tories cross one another.

Now that the trajectories are in the correct frame of reference, the actual errors

between the leader’s true trajectory and the follower’s true trajectory can be calcu-

lated. The errors presented in Figures 4.27 and 4.28 were calculated by subtracting the

leader’s true value from the follower’s true value. Recall that the goal of the control

action was to minimize the cross-track error between the follower’s actual trajectory

and the leader’s actual trajectory. Using the transformation shown in Appendix A,

the cross-track errors are shown to be less than .4 meters. These results are typical

of the cases that completed a successful run.
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Figure 4.24: Example of the failure mode induced by small magnetic variations.
Notice the position measurement and estimate are on the opposite side of the reference
trajectory. The tracking command, u2, commands the vehicle to turn away from the
reference trajectory.

4.6 Summary

This chapter demonstrated that the magnetic aided position algorithm can pro-

vide position solutions with sub-meter level accuracy. Using a map of an entire area

to estimate a random trajectory produced RMS errors of less than .3 meters, while the

leader-follower algorithm produced errors less than .4 meters, as long as the follower

stayed within the range of measurements provided by the leader.
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Figure 4.25: The follower’s trajectory shown in both reference frames. (a) Shows
the follower’s trajectory in the leader’s estimated trajectory reference frame and (b)
shows the follower’s reference frame resolved in the leader’s true trajectory frame.
The leader’s true trajectory, in this case, veered to the right along the main hallway
and to the left on the side hallway.
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Figure 4.26: The follower’s trajectory shown in both reference frames. (a) Shows
the follower’s trajectory in the leader’s estimated trajectory reference frame and (b)
shows the follower’s reference frame resolved in the leader’s true trajectory frame.
The leader’s true trajectory, in this case, veered to the left along the main hallway
and to the left on the side hallway. The sawtooth variations along the side hallway
are due to the position reset algorithm.
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Figure 4.27: The position errors between the follower trajectory and the leader
trajectory. The rise in error following the turn at 80 seconds is caused by no control
along the path of travel. This case used the position reset algorithm.
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Figure 4.28: The position errors between the follower trajectory and the leader
trajectory. The rise in error following the turn at 80 seconds is caused by no control
along the path of travel. This case did not use the position reset algorithm.
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V. Conclusions and Recommendations

T
his research has demonstrated the feasibility of using magnetic field variations

to aid inertial navigation systems. The method demonstrated modified a multi-

beam terrain navigation approach to take advantage of the three distinct measure-

ments provided by the three-axis magnetometers. The adapted approach uses a KF

and a magnetic aided position algorithm to aid the inertial system. The magnetic

aided position algorithm relates the magnetic field intensity measurements to a spe-

cific position through the use of a map of magnetic field intensities for each of the

three magnetometer axes. The maps were generated using magnetic field intensity

data collected at equally spaced grid points and then interpolated to provide closer

grid spacing.

5.1 The Magnetic Aided Position Algorithm

Following the generation of the magnetic field intensity maps, the position mea-

surement update was generated using the magnetic aided position algorithm. The

magnetic aided position algorithm calculates the position measurement by applying

Bayes’ rule to the results of a maximum likelihood function and the propagated pdf

generated via the KF. The measurement update was then incorporated with the KF

position estimate with the standard KF update equations. The positon aiding al-

gorithm, as developed, was applied in three different cases: a MC simulation with

simulated measurements generated from the magnetic field map, a test using real

measurements, and a leader-follower simulation.

5.2 Magnetic Aided Position Algorithm Tests

The MC simulation showed that the inertial system, with aiding provided by

the magnetic aided position algorithm, was able to successfully track 100 random

trajectories with RMS errors of less than .3 meters.

The test of the magnetic aided position algorithm using real measurements

helped to verify that the process used for the MC simulation was valid, as well as
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to illustrate that indoor magnetic field intensities are stable enough to be mapped,

stored, and used at a later date for position sub-meter position solutions.

The leader-follower algorithm demonstrated one application of this magnetic

aided position algorithm. The leader collects magnetic field intensity data as it moves

through an area and then passes this information to a second vehicle. The follower

then uses the magnetic data, the estimated trajectory, and any turn commands from

the leader to track the lead vehicle through an environment. The leader-follower

implementation requires both the leader and follower to have more accurate speed

control (σa = .02 m/s2) than when the position aided algorithm is implemented

using the map of an entire area (σa = .08 m/s2). The need for less variation on

the acceleration of the leader and follower is because the map generated with this

approach is a subset of the entire area. If the follower gets outside the bands of the

magnetic map generated by the leader, there is no information available to aid the

follower.

Initially, the leader-follower algorithm used three sensors on the leader to mea-

sure the magnetic field. Upon implementation, three sensors were found to be inad-

equate to meet performance goals. The three sensor approach makes the magnetic

aided position algorithm more susceptible to, in terrain navigation terminology, “flat-

bottomed” areas, which are areas where the magnetic variation between points is less

than the measurement noise of the magnetometers. To overcome this in simulation,

a position reset algorithm was implemented. In addition to the problem of “flat-

bottomed” areas, the three sensors did not provide enough map coverage to achieve

the desired performance goals. Therefore, an additional sensor was added to the

leader. By adding the fourth sensor and the position reset algorithm, performance

was increased dramatically. Using this method resulted in the follower tracking the

leader within .4 meters.

68



5.3 The Way Ahead

While this research has shown the potential of using magnetic field intensity

information to aid indoor position information, there are still several aspects that

should be considered. Among these are the length of time magnetic intensity values

are valid, the benefits of using heading reference information, ways to improve per-

formance of the leader-follower algorithm, and how to overcome the “flat-bottomed”

areas.

The length of time between the collection of the magnetic map data and the

real measurements was two weeks. Throughout the literature, there has not been

much characterization of magnetic field variations in an indoor environment, except

to say that the variations prevent electronic compasses from working properly [13].

While this research shows the variations to be stable enough for success over a two

week time period, it is necessary to know when the measurements no longer become

valid. A possible solution to the time stability question would be to subtract out the

Earth’s changing field and compare just the magnetic anomalies present in the indoor

environment. This is the method used in [19] for the outdoor case.

For simplification purposes, vehicle heading information was not directly used

in this research. Magnetic field intensity is a three dimensional vector at any given

point. This vector is described by the three-axis measurements provided by the mag-

netometers. If the magnetic intensity is collected at a known location and orientation,

the heading of a vehicle can be determined by finding the point of maximum likeli-

hood using the total magnitude of the magnetic field intensity and then finding the

orientation that matches the three-axis measurement. The heading information would

allow for a more accurate control of the vehicle as it moves through an environment

and provide more precise positioning information. However, from a computational

standpoint, it would require searching over one more dimension (x,y position plus

heading, as opposed to x,y position).
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A couple of methods already investigated for improving the performance of the

leader-follower implementation were adding an additional sensor to the leader and

implementing a position reset algorithm in the second vehicle. In the simulation,

the position was reset by detecting when the vehicle hit the “wall” of the hallway.

This can be implemented on a real vehicle by using a touch sensor on each side of

the vehicle. If the right touch sensor is activated, the vehicle could be controlled to

the left a prescribed distance and then the magnetic aided position algorithm could

take over control. This method treats the symptom of the problem as opposed to the

problem itself, which is a lack of variation in the magnetic field.

Adding an additional sensor on the leader helped reduce the problems caused

by a lack of variation, but did not eliminate them. Another approach would be to

add an additional sensor to the follower. The second sensor would allow at least two

different methods to be used to remove the ambiguity seen in the “flat-bottomed”

areas. The first method would be to combine the measurements from the second

sensor with the measurements from the first sensor in the likelihood function to help

remove the ambiguity. This approach comes from the observation in [11] that more

measurements help to remove erroneous measurements. The second method would

be to find the position of each magnetometer using the likelihood function and then

combine that information with the geometry of the sensor array. If the positions

found using the likelihood function are not feasible due to the physical layout of the

system, then these position updates could be ignored, or the results of the likelihood

function could be compared to find the points that do match the physical layout of

the sensor array.

Overall, the processes developed and implemented for this research show that

magnetic field intensity can be used as a viable source of position data indoors. While

areas of limited magnetic variation pose the largest problem for this navigation ap-

proach, the problems could be overcome by using some of the above approaches or by

combining this approach with other indoor navigation techniques, such as vision-aided

navigation.
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Appendix A. Leader-Follower Coordinate Transformation

F
igure A.1 is a graphical representation of the error transformation, with xr1/2

representing the position estimate of the leader, xactual1/2 representing the ac-

tual trajectory of the lead vehicle, and xplant representing the follower’s position at a

given instant in time. The subscript 1/2 represent the two closest positions to xplant

from the respective trajectories. With Figure A.1 as a reference, the point C is found

using the procedure outlined in Section 3.5.2, with the position estimate, x(t+k ), re-

placed by xplant. The next step is to determine the distance between C and B′. Since

xactual and xr are discrete, B′ may be between discrete points and cannot be found

directly. Therefore, the Law of Sines can be used to find the length B.

In order to use the Law of Sines, which states

A

sin(A)
=

B

sin(B)
=

C

sin(C)
, (A.1)

at least two sides and an angle or two angles and one side must be known. In this

case, the length of A, the length of D, and the angle between A and B can be found

from the known information. The length of A is calculated by finding the norm of

~A, which is the vector that points from point C to point xactual1. If there exists two

vectors, the angle between them can be calculated. The vector between C and B′ is

not known, but the unit vector between C and B′ is known, it is equal to the unit

vector of ∆p, ~u∆p. Therefore, the angle between ~A and ~u∆p, is found using

δ = cos−1

(
~A · ~u∆p

|| ~A||||~u∆p||

)

. (A.2)

With δ and A known, the next step is to find the angle opposite side A, α. The angle

α is found by calculating the angle between ~u∆p and ~uD, which is the unit vector

of the vector that extends from xactual2 to xactual1, and subtracting that angle from

180◦. Using Equation A.1 and the values calculated for A, α, and δ, the length of D

is calculated. The length of D is added to xactual1 to determine the location of B′.
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Figure A.1: The geometric representation used to determine the calculations needed
to convert the follower’s trajectory into the leader’s true trajectory frame of reference.

The vector ~B is then calculated by subtracting B′ from C. With ~B, the error vector

is calculated by multiplying the norm of ~B times ~u∆p.

If xplant is located between the leader’s true trajectory and the leader’s estimated

trajectory, ~u∆p will point in the direction opposite of the actual error. This creates a

situation where δ is calculated as δ′. Therefore, if the value calculated for δ is greater

than 90◦, δ is subtracted from 180◦ and the sign of ~u∆p is reversed.
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