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Abstract — This paper provides the experimental results of a 
system utilising only the sensors available on a smartphone to 
provide an indoor positioning system that does not require any 
prior knowledge of floor plans, transmitter locations, radio signal 
strength databases, etc. The system utilises a Distributed Particle 
Filter Simultaneous Localisation and Mapping (DPSLAM) 
method to provide constraints on the drift of a simple hip-
mounted Inertial Measurement Unit (IMU) integrated into the 
smartphone and providing the core information on the movement 
of the user. This system was developed during a project 
investigating methods of providing relative positioning systems to 
a team operating for extended periods without GPS. The paper 
concentrates on the DPSLAM positioning technique suitable for 
use by an individual with no prior knowledge of the area of 
operation before deployment. As with all SLAM systems, the user 
is simply required to revisit locations periodically to enable IMU 
drifts to be observed and corrected. 

Opportunistic radio positioning, SLAM, indoor navigation 

I. INTRODUCTION (HEADING 1)
Over recent years there has been increasing interest in 
ubiquitous positioning, or the ability to determine a location in 
any environment, outdoors and indoors. We have all become 
used to the availability and performance of Global Navigation 
Satellite Systems (GNSS) for accurate outdoor radio 
positioning with a reasonable degree of reliability and 
availability. However radio indoor positioning is more 
challenging since GNSS signals do not penetrate buildings 
well, and indoor positioning therefore relies typically on local 
infrastructure and other support to aid the user. Indoor radio 
positioning is available today to the general public in 
conurbations via WiFi and cellular measurements, by 
exploiting a database of signal strength fingerprints managed 
and provided by a third party provider such as Skyhook [1]. 
The user can access this database via a cellular or WiFi data 
connection. These systems therefore have two clear constraints:  
the area must already have been surveyed, and the user must 
have a data connection available to them. 

An ideal system would not rely on these constraints, but would 
develop its own database during operation. Such a system is 
described and demonstrated here. The benefits of this system 
are significant - it can provide situational awareness and asset 
tracking in new and unknown environments for the military, 
emergency services, lone workers, security personnel and 

autonomous vehicles. This method does not require a data link 
to function, nor any prior surveying of the radio environment, 
nor any other prior knowledge such as a floor plan or map. The 
system can also be used however to quickly and easily generate 
maps of the radio environment or floor plans, which can be 
beneficial for organisations wishing to provide positioning 
services to the public using a simpler positioning method - i.e. 
this method can be used to rapidly survey an area and generate 
a signal fingerprint database for others users to exploit.  

II. INDOOR POSITIONING

A. GNSS challenges 
The problems with GNSS availability indoors are well 
documented. The weak signals cannot easily penetrate 
building materials, especially not through multiple floors. 
While high sensitivity receivers exist [2] that can provide 
indoor signal tracking with degraded positioning performance, 
they have not provided a viable solution to the indoor 
positioning problem.  

B. ZUPTS benefits and challenges 
An existing indoor positioning technique that does not rely on 
any infrastructure or prior knowledge is the Zero Velocity 
Updates (ZUPTS) method. In this method, an inertial 
measurement unit (IMU) is attached to the foot of a user and a 
strap-down IMU solution [3] tracks the movement of the user 
as they walk. A typical strap-down solution using low-cost 
and highly-portable IMU sensors would normally suffer rapid 
degradation in positioning performance with no external 
assistance from GNSS or other sensors. The ZUPTS method 
can however exploit a particular feature of pedestrian motion 
to constrain inertial drift. Each foot is regularly static during 
normal walking motion during the periods when the users 
exploit the friction between their foot and the ground to propel 
their body. Since an IMU mounted to the foot must also be 
known to be static during this short period, the IMU 
accelerometer and gyroscope biases are observable during this 
short period with every step. The regular observations of the 
IMU biases permit much more accurate inertial navigation 
than would be possible if these biases were not regularly re-
estimated. The accumulation of error associated with the 
ZUPTS location estimate is therefore reduced, but not 
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removed completely without further constraints. Extended 
operations indoors or in GNSS-denied locations will still 
result in a user’s positioning estimate degrading with time. 
Mounting a device specifically to a foot may also not be an 
attractive solution for some applications, e.g. military 
personnel, casual consumer users navigating a shopping 
centre, etc. 

C. Deployed beacons 
Indoor navigation and tracking can be provided by deploying 
dedicated tracking beacons in the area of operation [4]. The 
benefit of this approach is the ability to exploit positioning 
measurements from a well-known and carefully designed 
system. The drawbacks are the issues of signal penetration 
through multiple walls when systems are constrained to 
operating within legal broadcast limits and the practicalities of 
rapid beacon deployment with good signal geometry in a new 
area of operation. Typically any system exploiting the license-
free Industrial, Scientific and Medical (ISM) bands are limited 
by the maximum permitted broadcast power, resulting in a 
system with a maximum usable distance of a few tens of 
metres if there are multiple interior walls or other dense 
objects between the user and the beacons. This problem can be 
reduced by using low frequency signals [5] or by only 
operating in fixed environments with permanent indoor 
positioning needs, such as airports or warehouses, but is a 
significant problem for a system that must be capable of rapid 
deployment in new unknown environments (e.g. for military 
operations, rescue operations conducted by emergency 
services, etc). 

D. Opportunistic radio positioning benefits and challenges 
An alternative method of indoor radio navigation exploits 
pervasive opportunistic radio signals such as television, 
commercial radio and cellular broadcasts. These signals are 
typically received at much higher signal strengths than GNSS 
signals and so are capable of penetrating deeply into buildings. 
Much work has already been performed by various authors and 
companies in the field of outdoor opportunistic radio 
positioning exploiting standard radio positioning methods 
employing timing measurements to infer range between a given 
transmitter and the receiver or to assist GNSS signal 
acquisition [6 - 8]. However, the signal environment is highly 
complicated indoors, with rapid fading variations and highly-
variable multipath interference corrupting these simple, 
traditional positioning methods [9 - 10] The only feasible 
method of accurate opportunistic radio positioning in difficult 
signal environments is signal fingerprinting, where the pattern 
of signal strength measurements gathered at a particular 
location is assumed to be repeatable and unique [11]. This 
method is currently provided by pre-mapped databases of 
signal fingerprints which users access via a network 
connection. An obvious and desirable extension to this concept 
is the automatic generation of this database as a user explores a 
new, unknown area. This can be achieved by developing a 
Simultaneous Localisation and Mapping (SLAM) technique, 
and such a method is described and demonstrated in this paper. 

III. RADIO SIGNAL STRENGTH MAPPING

First it is important to test the hypothesis that radio signal 
strength maps in indoor environments exhibit high spatial 
variation, but low temporal variation (i.e. each map is complex, 
but does not vary significantly over time). To do this we use a 
Gaussian Processes regression scheme.  

A. Gaussian Processes 
A thorough discussion of Gaussian Processes (GP) is available 
in [12] and a discussion of its use for generating radio signal 
strength heat maps is given by Ferris [13]. The Gaussian 
Processes technique is a well-known multi-dimensional 
regression method that takes a set of training data and user-
defined Kernels to generate multidimensional Gaussian 
mixture models for the states of interest. 
The BAE Systems Advanced Technology Centre Research 
Facility provided the indoor environment for this study. This 
two storey building is roughly 100 metres by 50 metres in 
dimension, with a dense structure of multiple rooms, 
computers, servers, laboratories, and other objects. The 
building is located on the outskirts of a large town, and so 
enjoys a good coverage of opportunistic radio signals. Signal 
strength maps generated using training data and Gaussian 
Processes methods are given below in Figures 1, 2 and 3 for 
VHF signals (FM public broadcast radio), cellular signals 
(GSM 900) and WiFi (2.4 GHz) signals. The WiFi maps are 
shown as both GP mean value maps, and GP variance maps, 
demonstrating the ability of the Gaussian Processes method to 
not only provide a prediction of the estimated signal strength 
at an un-surveyed location, but to also provide an estimate of 
the error associated with the prediction. 
The aim of this set of measurements was to determine the 
complexity of these signal strength maps, and to determine 
their variation with time. Due to the range in opportunistic 
transmitter locations, frequencies and transmit powers there is 
a stark difference between maps. The most significant 
contributing factor to this is likely to be the variety of 
transmitter locations, resulting in signals entering the building 
from different directions. 
A simple experiment provided a useful test of the validity of 
Gaussian Processes for generating signal strength maps from 
training data while also testing the temporal variation in the 
maps. A set of GP signal strength maps was generated on a 
given day and then a week later the building was surveyed 
again. The new measurements were made at arbitrary 
locations within the building within the same regions (i.e. the 
same rooms and corridors) but no attempt was made to record 
new measurements at the exact old survey locations. The 
predictions extracted from the old GP maps at these new 
survey locations were then compared to the new survey data. 
The results are shown in Figure 4. It was determined that the 
new measurements typically agreed with the predicted values 
to within a few dBm, and within the error estimate of the 
Gaussian Process prediction. Large changes to the structure of 
the building or its contents are of course expected to cause 
more significant variations, and so ideally signal strength 
maps generated from previous visits to an area should only be 
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Figure 1: Gaussian Process mean signal strength maps for a number of VHF frequencies. The black crosses show the locations of the training data measurements 
used to generate the maps. The green dashed line marks the edge of the main building. The units of the image axes are pixel number. The colour bar scale is dBm.

Figure 2: Gaussian Process mean signal strength maps for a number of GSM 900 frequencies, given by Absolute Radio Channel Frequency Number (ARFCN). 
The black crosses show the locations of the training data measurements used to generate these maps. The units of the image axes are pixel number, and the colour 
bar scale is dBm. 
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Figure 3: Gaussian Process mean signal strength (left) and variance (right) maps for two WiFI routers in the test area. The black crosses show the locations of the 
training data measurements used to generate these maps. The green dotted outline shows the main building outer wall. The units of the image axes are pixel 
number, and the colour bar scales are in dBm. 
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Figure 4: Examination of the predictive capability of Gaussian Processes regression (see main text for discussion). The figure shows the results of two 
experiments, provided by the two columns. The top image in each column provides a comparison of the predicted values at each location (black circles) and the 
measured values at those locations (red squares) for two opportunistic VHF public radio broadcast frequencies. The lower plots show the residuals between those 
measurement sets. The x-axis provides the sample number through the surveys. 
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used as a coarse guide. The variance of Gaussian Process 
signal strength maps could grow over time, or “age” to reflect 
a reduction in confidence regarding the structure or contents of 
a given building. Ideally a system should not have to rely on 
any prior surveying of an environment at all, which is the 
great benefit of the SLAM method described by this paper.     

IV. OPPORTUNISTIC RADIO SLAM 
Previous authors have considered WiFi SLAM using Gaussian 
Processes Latent Variables [14] and an efficient extension in 
the form of GraphSLAM [15]. These methods utilize an 
iterative process to converge upon a SLAM solution. Here we 
utilize a method based on Distributed Particle SLAM 
(DPSLAM) [16]. The advantage of this method is that it 
provides a continuous “online” SLAM solution, a continuous 
representation of the current user location probability density 
function, and also provides a flexible core navigation engine to 
permit fusion of other sensors and constraints when available 
(e.g. GNSS data, road-snapping, indoor floorplans, etc).   

A. Occupancy Grid 
The occupancy grid is a simple concept. As the user moves 
through the indoor environment and makes radio 
measurements, the spatial resolution for storing these radio 
measurements defines a grid of permitted locations. For 
example, there is no point choosing to store fingerprints on a 
millimetre scale, or on a kilometre scale, when aiming to 
provide metre-level positioning indoors. A metre-scale 
occupancy grid is much more sensible. As a user moves 
through an environment, the particle cloud providing an 
estimate of the Probability Density Function (PDF) of position 
will be spread across a number of cells in the occupancy grid. 
At each measurement epoch the user will record the signal 
fingerprint at their current true location and each particle will 
enter their identity and the current time into the cell they 
currently occupy in the occupancy grid. When a particle 
revisits a cell in the occupancy grid, it can “look up” if it has 
been in that cell before and compare the current and old set of 
signal strength measurements. This provides the basis for the 
SLAM loop closure, as discussed below. 

B. DPSLAM 
Distributed Particle Simultaneous Localisation and Mapping is 
a particle-filter-based SLAM method [16]. DPSLAM exploits 
efficient databases via pointers and binary trees to maintain a 
history of the states of interest for each particle over time. The 
particle cloud states are initialized by some primary 
positioning system (e.g. GNSS signals outdoors before a user 
enters a building, or via signal fingerprinting from a prior map 
in a region where a prior map database is available, etc). 
While operating in a new GNSS-denied region, all positioning 
updates are provided by inertial measurements alone (e.g. 
ZUPTS or the simple step-and-compass method used here), 
resulting in a gradual decrease in the certainty of the user’s 
true location (i.e. the particle cloud disperses as the PDF 
expands). When the user is provided with some positioning 
constraint (e.g. GNSS availability) the particle cloud is 
reweighted (particles near the GNSS location estimate are 

given a high probability of representing the true user location) 
and resampled in the usual manner. The particle cloud then 
collapses accordingly, representing improved confidence in 
the user location. In this way, low probability particles and 
their history (including their entries into the occupancy grid) 
are “pruned” from the particle database, and high probability 
particles are duplicated to maintain a high density of particles 
around the maximum of the probability density function. The 
history of the particle cloud can also be updated at this point 
by reweighting the history of all particles, resulting in the 
track of the user being updated as well as the current location. 
This method extends to a SLAM framework when the 
positioning update is not via an external aiding mechanism, 
but is provided by the user revisiting locations and re-
observing “landmarks”, in this case making signal fingerprint 
measurements in revisited locations within the occupancy 
grid. If the signal environment is complex and varied, as is 
typical indoors, then signal fingerprints can vary measurably 
on short length scales (e.g. a few metres). When a user revisits 
a location, this will be reflected in the signal fingerprint 
measurements and the particles can be reweighted 
accordingly. A particle that revisits a cell in the occupancy 
grid and retrieves its old signal fingerprint, only to find that 
the current measured fingerprint is completely different, will 
be given a low probability weighting (it is unlikely that the 
user is really revisiting an old location, else the fingerprints 
would be similar). However a particle that revisits a cell, 
retrieves its old fingerprint and discovers that it is similar to 
the current fingerprint measured by the user will be given a 
high probability weighting, i.e. it is plausible that this particle 
represents the current user location because the old and new 
fingerprints match. As the user continues to move, if this 
particle continues to make a sequence of similar fingerprint 
measurements, then its probability weighting will stay high, it 
will spawn new particles at every epoch and the particle cloud 
will collapse onto it (low probability particles will be removed 
and high probability particles will be duplicated).   

C. Method 
The indoor tracking experiments discussed here were all 
performed using data gathered on a “smartphone” cellular 
telephone. The data was then processed offline using Matlab, 
although the processing time was much faster than the length 
of the experiments. The computational overhead was 
dominated by the number of particles (1500) used in the 
particle filter, which in turn is affected in part by the 
resolution of the occupancy grid (1m) and the performance of 
the inertial measurement unit. The availability of ZUPTs 
would greatly reduce the number of particles required. 

1) Smartphone measurements 
A simple Android program was written to log all sensor data 
from the smartphone to a file. The data included 
accelerometer, compass, GPS, WiFi, and cellular 
measurements. The WiFi measurements could be polled every 
second, but cellular measurements could not be polled by the 
user and were returned by the device at a varying  update rate 
of approximately 0.1 – 0.25 Hz. It seemed that the device only 
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returned cellular measurements when a change in power level 
was recorded. 

2) Pedestrian motion estimation 
A foot-mounted IMU method (ZUPTS) was not employed for 
a variety of reasons, including the lack of a gyroscope within 
the smartphone used. The inertial measurement process was 
relatively simple, with accelerometer thresholds used to 
determine that the user had made a stepping motion, and the 
compass used to provide an estimate of the direction of this 
motion. When walking with a hip-mounted IMU, the total 
accelerometer magnitude varies dramatically, typically 
registering a sudden but characteristic spike from around 0.8g 
to around 1.5g as the torso drops towards the ground with the 
leading leg, then is suddenly arrested as the leading foot hits 
the ground, as shown in Figure 5. A simple moving window 
across the streaming accelerometer data can therefore be used 
to register and count steps. The compass data was low-pass-
filtered to remove the high frequency perturbations caused by 
the user stepping motion. The IMU (smartphone) was 
mounted on the hip of the user during use. Aspects such as 
detecting motion types (walking and running, moving up and 
down stairs, sidestepping, etc) were also investigated. For the 
experiments described here the user walked around the ground 
floor of the indoor environment. In future a MEMS barometer 
may be useful in detecting floor changes to permit 3D indoor 
tracking. 

Figure 5: Stepping motion is easily detected from accelerometer data using 
thresholds (shown by the dotted horizontal lines) 

3) Navigation Engine 
The navigation engine utilized a particle filter to track the step 
length, compass bias, latitude and longitude of the user. The 
engine was initialized outdoors with an initial position 
estimate and uncertainty provided by GPS. This defined the 
initial size and position of the particle cloud. The engine was 
also initialized with an expected range in possible user average 
step length and compass bias. When the engine was initialised, 
each particle was allocated a randomly chosen step length and 
compass bias within this range. As the user moved, the 

accelerometer thresholds triggered each step event and the 
low-pass-filtered compass reading was passed to the engine. 
Each particle propagated their step length in the direction of 
the compass heading, with each particle’s slightly different 
step length estimate and compass bias setting resulting in the 
particle cloud growing over time. Each particle was also 
perturbed by a small randomly-generated amount to represent 
the small random variations in a user’s step length at each 
pace, and also to represent the measurement noise on the 
magnetic compass measurement. The particle filter could be 
constrained via GNSS measurements or DPSLAM processing. 
The user step length and compass bias became observable 
during periods of GNSS availability and whenever DPSLAM 
loop closure occurred. To further account for variations in step 
length and compass bias during the course of the tracking 
process, whenever GNSS measurements or a loop closure 
caused the particle cloud to collapse, the new particles 
generated by the reweighting and repopulating process were 
each given a small perturbation in step length and compass 
bias to the values originally allocated to their parent particle.  

D. Experimental results 
The results of a typical experiment are provided here in the 
form of images at various stages in the process (see Figure 6). 
The first image (marked A) shows the initial position of the 
user (represented by the particle cloud), provided by an 
outdoor GPS measurement. The red arrows visible on the map 
show the true path taken by the user. The floor plan itself is 
not available to the navigation engine, i.e. there is no 
knowledge of walls, rooms, outdoor regions, indoor regions 
etc. The next image (B) demonstrates the short path taken by 
the user to enter the building. Two paths are now visible. The 
blue path is the result of using the step detection and heading 
measurements alone, with no radio information provided. The 
green path represents the output of the full navigation engine 
fusing inertial measurements with opportunistic radio and GPS 
data. In these first few seconds of the journey, the availability 
of GPS provides some constraint on the step length of the 
user, and compass bias of the device, such that the navigation 
engine is partially calibrated when the user enters the building. 
The distance covered by the user by this stage is 
approximately 50 metres.  
With no prior knowledge of the opportunistic radio signal 
behaviour inside the building the positioning estimate is 
provided only by the step detection and magnetic compass 
estimates, and so the accuracy degrades with time. The 
particle cloud grows accordingly as the user moves through 
this new environment (image C). However by image D, the 
user has revisited a region encountered earlier on in the 
journey, when the true location of the user was known more 
accurately. Some of the particles in the cloud (the ones best 
representing the real path taken by the user) also revisit cells 
in the occupancy grid that they have populated before. The 
current radio measurements are compared to the old radio 
measurements stored in these occupancy grid locations, and 
the particles are reweighted according to how well their past 
and current measurements match. The new particle weights  
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Figure 6: These images show the first loop closure for an indoor positioning experiment using Opportunistic Radio DPSLAM. The red arrows show the true user 
motion during the whole experiment (see Figure 7). The blue line is the track from only the step detection and compass measurements. The green line represents 
the DPSLAM track. The information represented by the green circle is discussed in the main text. During images A and B, GNSS measurements allow the step 
length and compass bias to be observed. Image C demonstrates the growth of the particle cloud when using dead reckoning alone. Image D demonstrates the 
collapse of the particle cloud caused by the user moving through a previously-visited corridor such that the current radio fingerprints match those stored by the 
user earlier in the journey. The floor plan is provided as a visual aid here, but was not available to the navigation engine.  

A B

C D
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are applied to both the current particle cloud, and the history 
of the track. As the user continues to operate in the 
environment the system is able to constrain the drift on the 
user’s position while generating a map of the signal strength 
fingerprints within this building.  By the end of the 15 minute 
walk around the building the user’s final position error is only 
4 metres, compared to the error on the uncorrected inertial 
measurement estimate of 86 metres. The final user track is 
shown in Figure 7. 

Figure 7: The entire track produced by this fifteen minute indoor walk. The 
final position error for the unassisted IMU track (blue line) is 86 metres. The 
final position error for the Opportunistic Radio DPSLAM solution is 4 metres. 
The largest error at any point along the Opportunistic Radio DPSLAM 
solution track is 12 metres. It should be noted that during the system operation 
the instantaneous error can be larger than this, but that the history of the user 
motion is updated and improved whenever the user revisits locations or when 
GNSS measurements become available. 

The images in Figure 6 also contain a green circle which 
varies in size. This circle represents the overall global position 
error at this point. At early stages of the journey, before any 
particle re-weightings occur, the size of this circle is set by the 
size of the particle cloud and is stored at each epoch by each 
particle in the occupancy grid. This is critical for later particle 
cloud collapses as it maintains the history of the error 
associated with the dead-reckoned sections of track. The 
particle cloud can collapse down onto a previous section of 
track quite well, seemingly suggesting that the user’s location 
is well known. However that section of track may itself carry a 
large global error, as it may have been created after a 
significant period of dead reckoning. When a particle cloud 
collapse occurs due to a DPSLAM loop closure therefore, the 
particles extract the error circle size associated with that 
section of track history, and display that error estimate to the 
user as the error circle. The user may therefore see a tight 
particle cloud demonstrating that the user location is well 
known along its own historical path, but a large error circle 

demonstrating that the global estimate of the user location is 
not as well known. These historical error estimates could be 
corrected by the user generating a nearby GNSS estimate at 
some time in the future or by sharing Gaussian Process signal 
strength maps or training data amongst other users.  

V. CONCLUSIONS AND FURTHER WORK

A new method of indoor radio positioning has been developed 
that exploits opportunistic radio positioning and the DPSLAM 
technique. The flexible multi-sensor navigation engine 
provides indoor and outdoor radio positioning capabilities 
without any prior surveying or knowledge of the signal 
environment. The opportunistic signal source locations do not 
need to be known, nor do the signals need to be demodulated, 
decoded, or contain any specific structure. The only critical 
assumption is that the opportunistic transmissions maintain a 
fixed power output, and the use of signals populating known 
radio bands such as VHF FM, cellular, television, etc, will 
allow the user to confidently make that assumption. The user’s 
indoor position estimate is provided primarily by a simple 
inertial measurement unit, but the associated errors that 
normally increase with time can be corrected and bounded by 
opportunistic radio measurements within the SLAM 
framework.  
The indoor global positioning accuracy is dependent on the 
initial calibration of the system and so factors such as the 
accuracy of the initial GNSS position estimates while 
operating outdoors, and the calibration of the user step length 
estimate and initial compass bias during initial periods of 
GNSS availability. The indoor system accuracy is also 
dependent on the user periodically revisiting previous 
locations, to allow the user’s error to become observable and 
to be corrected.  
A powerful capability of this system lies in the ability to 
generate signal strengths maps for an area quickly and easily 
using this DPSLAM approach and Gaussian Process 
regression methods, rather than through a slow manual 
surveying approach.  
Current on-going work includes the addition of a simple 
wideband radio scanner to the sensor set to allow the 
incorporation of other radio bands than those recorded by a 
smartphone. Since this DPSLAM positioning system can 
exploit any signal that is broadcast with fixed power from a 
static transmitter, even the broadcasts from GNSS jammers 
could provide useful underlying indoor signal strength maps 
for this this system to exploit. This system therefore not only 
provides a navigation aid when GNSS is denied by difficult 
signal environments, the indoor positioning performance can 
actually improve in the presence of GNSS jammers.  
Magnetic anomaly measurements can also provide a useful 
fingerprinting metric to add to the set of opportunistic radio 
measurements. It will also be desirable to combine the 
Gaussian Processes regression methods with the occupancy 
grid to enable particles to be sensitive to measurements stored 
in nearby occupancy grid cells. This should permit the system 
to function with a sparse particle cloud, and may permit useful 
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loop closures to occur when the user moves to locations 
nearby to sections of historical track, rather than having to 
revisit exact previous locations. 
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